Introduction to Theoretical Computer Science T/Y
Tutorial 3, 7-8 February
Problems

Homework problems:

1. Construct a nondeterministic finite automaton that tests whether a given binary input sequence contains either 101 or 110 (or both) as a subsequence. Make the automaton deterministic using the subset construction.
2. Construct the minimal automaton corresponding to the following deterministic finite automaton:

3. Show that if a language $L \subseteq\{a, b, c\}^{*}$ is recognised by some finite automaton, then so is the language $L \mid\{a, b\}$, which is obtained by removing all c 's from each string in L.

Demonstration problems:

4. Construct a nondeterministic finite automaton that tests whether in a given binary input sequence the third-to-last bit is a 1 . Make the automaton deterministic using the subset construction.
5. Show that if a language $L \subseteq\{a, b\}^{*}$ is recognised by some finite automaton, then so is the language $L^{R}=\left\{w^{R} \mid w \in L\right\}$. (The notation w^{R} means the reverse of string w, cf. problem $1 / 3$.)
6. Show that if languages A and B over the alphabet $\Sigma=\{a, b\}$ are recognised by some finite automata, then so are the languages $\bar{A}=\Sigma^{*}-A, A \cup B$, and $A \cap B$.
