T-79.1001/1002 Introduction to Theoretical Computer Science T/Y Tutorial 1, 24–25 January Problems

Remember to enroll for the course using the TOPI registration system by 27 Jan, 6 p.m. For bookkeeping reasons, registration is **compulsory**, even if you were not intending to attend the lectures or the tutorial sessions.

Homework problems:

1. (a) Let $A = \{a, b, c, d\}$, and define a relation $R \subseteq A \times A$ as follows:

 $R = \{(a, b), (b, c), (b, d), (c, a), (d, d)\}.$

Draw the graphs corresponding to the following relations:

(a) R, (b) R^{-1} , (c) $R \circ R$, (d) $(R \circ R) - R^{-1}$.

Are some of these relations actually functions?

- (b) List all the equivalence relations (partitions) on the set $\{a, b, c\}$.
- 2. Let $\Sigma = \{a, b\}$. Give some examples of strings from each of the following languages (at least three strings per language):
 - (a) $\{w \in \Sigma^* \mid w \text{ the number of } a \text{'s in } w \text{ is even and the number of } b \text{'s is divisible of three}\};$
 - (b) $\{a^{2n}b^{3m} \mid n, m \ge 0\};$
 - (c) $\{uvu^Rv^R \mid u, v \in \Sigma^*\};^1$
 - (d) $\{w \in \Sigma^* \mid \exists u, v \in \Sigma^* \text{ s.t. } w = uu = vvv\}.$
- 3. The reversal of a string $w \in \Sigma^*$, denoted w^R , is defined inductively by the rules:
 - (i) $\varepsilon^R = \varepsilon;$
 - (ii) if w = ua, where $u \in \Sigma^*$ and $a \in \Sigma$, then $w^R = au^R$.

It was proved in class (cf. also Lewis & Papadimitriou, p. 43) that for any strings $u, v \in \Sigma^*$ it is the case that $(uv)^R = v^R u^R$. Prove in a similar manner, by induction based on the above definition of reversal, the following facts:

- (a) $(w^R)^R = w;$
- (b) $(w^k)^R = (w^R)^k$, for any $k \ge 0$.

Demonstration problems:

4. Let A and B be subsets of a given fundamental set U. Prove the correctness of the following de Morgan formulas that relate the unions, intersections, and complements of A and B to each other:

 $\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}.$

5. Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$(m,n) \sim (p,q) \quad \Leftrightarrow \quad m+n = p+q.$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.

6. Prove by induction that if X is a finite set of cardinality n = |X|, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)| = 2^n$.

Spring 2006

¹For a definition of the notation w^R see Problem 2.