Introduction to Theoretical Computer Science T/Y Tutorial 1, 24-25 January
 Problems

Remember to enroll for the course using the TOPI registration system by 27 Jan, 6 p.m. For bookkeeping reasons, registration is compulsory, even if you were not intending to attend the lectures or the tutorial sessions.

Homework problems:

1. (a) Let $A=\{a, b, c, d\}$, and define a relation $R \subseteq A \times A$ as follows:

$$
R=\{(a, b),(b, c),(b, d),(c, a),(d, d)\} .
$$

Draw the graphs corresponding to the following relations:
(a) R,
(b) R^{-1},
(c) $R \circ R$,
(d) $(R \circ R)-R^{-1}$.

Are some of these relations actually functions?
(b) List all the equivalence relations (partitions) on the set $\{a, b, c\}$.
2. Let $\Sigma=\{a, b\}$. Give some examples of strings from each of the following languages (at least three strings per language):
(a) $\left\{w \in \Sigma^{*} \mid w\right.$ the number of a 's in w is even and the number of b 's is divisible of three $\}$;
(b) $\left\{a^{2 n} b^{3 m} \mid n, m \geq 0\right\}$;
(c) $\left\{u v u^{R} v^{R} \mid u, v \in \Sigma^{*}\right\} ;{ }^{1}$
(d) $\left\{w \in \Sigma^{*} \mid \exists u, v \in \Sigma^{*}\right.$ s.t. $\left.w=u u=v v v\right\}$.
3. The reversal of a string $w \in \Sigma^{*}$, denoted w^{R}, is defined inductively by the rules:
(i) $\varepsilon^{R}=\varepsilon$;
(ii) if $w=u a$, where $u \in \Sigma^{*}$ and $a \in \Sigma$, then $w^{R}=a u^{R}$.

It was proved in class (cf. also Lewis \& Papadimitriou, p. 43) that for any strings $u, v \in \Sigma^{*}$ it is the case that $(u v)^{R}=v^{R} u^{R}$. Prove in a similar manner, by induction based on the above definition of reversal, the following facts:
(a) $\left(w^{R}\right)^{R}=w$;
(b) $\left(w^{k}\right)^{R}=\left(w^{R}\right)^{k}$, for any $k \geq 0$.

Demonstration problems:

4. Let A and B be subsets of a given fundamental set U. Prove the correctness of the following de Morgan formulas that relate the unions, intersections, and complements of A and B to each other:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}, \quad \overline{A \cap B}=\bar{A} \cup \bar{B} .
$$

5. Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$
(m, n) \sim(p, q) \quad \Leftrightarrow \quad m+n=p+q .
$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.
6. Prove by induction that if X is a finite set of cardinality $n=|X|$, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)|=2^{n}$.

[^0]
[^0]: ${ }^{1}$ For a definition of the notation w^{R} see Problem 2.

