Introduction to Theoretical Computer Science T/Y
 Tutorial 2, 25 to 27 September
 Problems

Remember to enroll for the course using the TOPI registration system by 27 September. For bookkeeping reasons, registration is compulsory, even if you were not intending to attend the lectures or the tutorial sessions.

Homework problems:

1. Design finite automata that recognise the following languages:
(a) $\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 00 as a substring $\}$;
(b) $\left\{w \in\{0,1\}^{*} \mid 00\right.$ occurs exactly once in w as a substring $\}$.
2. Design a finite automaton (state machine) that models the behaviour of a simple TV set. The TV can be on or off, and when it is on, the channel selector of the TV has three positions ($1 / 2 / 3$), while the volume control has two (lo/hi). At the beginning the TV is off, but the automaton does not need to have any final states.
3. Design finite automata that recognise the following languages:
(a) $\left\{w \in\{a, b\}^{*} \mid w\right.$ starts with the substring $\left.a b a\right\}$;
(b) $\left\{w \in\{a, b\}^{*} \mid w\right.$ ends with the substring $\left.a b a\right\}$;
(c) $\left\{w \in\{a, b\}^{*} \mid w\right.$ contains $a b a$ as a substring $\}$.

Demonstration problems:

4. Formulate the model of a simple coffee machine presented in class (lecture notes p. 17) precisely according to the mathematical definition of a finite automaton (Definition 2.1). What is the formal language recognised by this automaton?
5. Design finite automata that recognise the following languages:
(a) $\left\{a^{m} b^{n} \mid m=n \bmod 3\right\}$;
(b) $\left\{w \in\{a, b\}^{*} \mid w\right.$ contains equally many a 's and b 's, modulo 3$\}$.
(The notation " $m=n \bmod 3$ " means that the numbers m and n yield the same remainder when divided by three.)
6. Design a finite automaton that recognises sequences of integers separated by plus and minus signs (e.g. $11+20-9,-5+8$). Implement your automaton as a computer program that also calculates the numerical value of the input expression.
