Introduction to Theoretical Computer Science T/Y Tutorial 1, 20-21 September Problems

Remember to enroll for the course using the TOPI registration system by 23 September. For bookkeeping reasons, registration is compulsory, even if you were not intending to attend the lectures or the tutorial sessions.

Homework problems:

1. Let $A=\{a, b, c\}, B=\{b, d\}$, and $C=\{a, c, d, e\}$. List the elements of the following sets:
(a) $A \cup(C-B)$;
(b) $B \times(A \cap C)$;
(c) $\mathcal{P}(\{\emptyset\})-\mathcal{P}(\emptyset)$.
2. (a) Let $A=\{a, b, c, d\}$, and define a relation $R \subseteq A \times A$ as follows:

$$
R=\{(a, c),(a, d),(b, b),(c, b),(c, d),(d, b),(d, c)\}
$$

Draw the graphs corresponding to the following relations:
(a) R,
(b) R^{-1},
(c) $R \circ R$,
(d) $R \cap(R \circ R)$.

Are some of these relations actually functions?
(b) List all the equivalence relations (partitions) on the set $\{a, b, c\}$.
3. Verify by induction the correctness of the formula:

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+\cdots+n \cdot 2^{n}=(n-1) \cdot 2^{n+1}+2
$$

Demonstration problems:

4. Let A and B be subsets of a given fundamental set U. Prove the correctness of the following de Morgan formulas that relate the unions, intersections, and complements of A and B to each other:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}, \quad \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

5. Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$
(m, n) \sim(p, q) \quad \Leftrightarrow \quad m+n=p+q
$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.
6. Prove by induction that if X is a finite set of cardinality $n=|X|$, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)|=2^{n}$.

