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Abstract

Random field Ising model (RFIM) is one of the simplest model with
quenched randomness in physics. The ground-state of the RFIM can be
solved in time, which scales polynomially with the system size. In this
summary the critical slowing down of ground-state solving algorithm is
considered based on work by A.A Middleton PRL, 88,017202 (2002). A
brief introduction to RFIM is given at the very begin after it maximum
flow problem is introduced and algorithm, which can solve it push
relabel algorithm is discussed, then the mapping on ground-state of
RFIM to Maximum flow problem is made. At the end running times
close to phase transition is considered.

1 Random field Ising model

The random field model was proposed originally by Larkin [1] to model
the defect pinning of vortices in superconductors. The simplest version of
the model for systems with discrete Ising symmetry is the RFIM. Fishman
and Aharony [2] mapped the RFIM with a field of random sign and fixed
magnitude with disordered bonds to an experimentally realizable system:
the diluted antiferromagnet in a field (DAFF). RFIM is as well one of the
simplest models with quenched randomness (i.e. random variables which do
not evolve with time) and as such an important model on studies how the
quenched randomness affects the behavior of spin systems.
The Hamiltonian of RFTM:

H=-J Z 8;85 + Zhisi, (1)
(i,3) @
where J is the coupling constant sum is done over nearest neighbours, s; =
+1 are Ising-type spins and h; is the random field from Gaussian distribution
with zero mean and variance A.
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Figure 1: A phase diagram of three dimensional random field Ising model.
Order parameter of this transition is the magnetization m (i.e. m =3, s;).
A transition from high disorder paramagnetic state to ferromagnetic state
is shown.

There is a phase transition in three dimensional random field Ising model.
A phase diagram with paramagnetic and ferromagnetic phases are shown
in Fig. 1. Generally in physics we are interested in the nature of phase
transitions. A phase transition can be first or second order (i.e. if the first
or second derivatives of the order parameter are discontinuous). In the case
of second order phase transition different scaling exponents can be found
when we are close to the phase transition. In physics we are interested in
the behavior in the vicnicity of the phase transition:
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where A, is the variance of random field value in zero temperature phase
transition boundary. One example on a scaling exponent is scaling exponent
for correlation lenght &

£~ " (3)

It is shown analytically that there is a phase transition in three dimen-
sional random field Ising model [3]. A phase diagram has been studied using
e.g. analytical studies [4], Monte Carlo method [5] and exact ground-state
calculations [6]. A problem in ground state and Monte Carlo studies are
the large finite size corrections needed for estimations of scaling exponents.
Estimations from ground-state calculations in three dimensions for critical
value of varince of random field in zero temperature is A, = 2.27 and the
value for critical exponent v = 1.37 [6].



Figure 2: Maximum flow problem. The problem is to maximize the flow
from source s to target ¢ through the network.

The large energy barriers to equilibration make it very time consuming
to sample configuration space accurately at low temperatures in system with
quenches randomness. Finding the partition function for the RFIM at finite
temperature is NP-hard [7]. As will be shown later chapters the ground-
state of the RFIM can be solved with time, which scales only polynomially
with the system size. This gives us possibility to study the zero-temperature
phase transition with much larger system sizes than in the case with finite
temperatures. This zero-temperature phase transition is expected to be
in the same universality class (i.e. same scaling exponents) as the finite
temperature transition [4]. This argument comes by assumption that in the
long enough lenght-scales the randomness by random field is assumed to
dominate over the randomness by temperature.

2 Maximum flow problem

The maximum flow problem is to find a feasible flow through a single-source,
single-target flow network that is maximum. Concrete examples of such
phenomenas are water flowing on the pipes or electricity moving on the
electric circuit. This problem can be described by using following quantities:
V', which contains all the vertices of the system, A contains all the edges
of the system, capasities ¢ between nodes, flow f between nodes, source s
and target ¢t. Capacity in our network means the maximum amount of flow,
which can be transferred between i and j. Cut is a partition of the vertices
of a graph into two sets S and S. Many times in maximum flow problem
we are interested in finding out the solution to min-cut problem at the same
time. Min-cut is the bottleneck of the network (i.e. cut where f;; = c;;).



Menger’s theorem states [8] that the maximum amount of flow is equal to
the capacity of a minimal cut. More on this problem can be found e.g. [9].

3 Push relabel

Push relabel algorithm is effective algorithm for solving Max flow/Min cut
problem. General running time of this algorithm scales as O(V2E). In this
algorithm we need to measure two extra quantaties the excess:

e()= > fi— D>, fy5=20 VieV\{st}, (4)

{ilGG1)eA} {ilG:H)eA}

and the distance d(7), which starts with value of how many nodes away
the node is from target and then evolve by relabel steps. The idea behind
algorithm is to push excess to the direction of smaller distances.

The pseudoce of push-relabel algorithm:

algorithm preflow-push/relabel
begin
preprocess
while e(i) > 0 for any i € V\{s,t} do
begin
choose i € V\{s,t}, with e(¢) > 0
push/relabel
end
end

procedure preprocess
begin
f=0
find exact d(7) i.e. distance from target
fsj = csj for (s,5) € A, e(j) = cs;
d(s) = o0
end
procedure push/relabel(i)
begin
if the network contains arc(i,j) with d(i) = d(j) +1
then push min{e(i),ci; — fij + fji} units of flow from node i to j
else d(i) = minjev{d(j) + 1/(¢,j) € A and ¢;; — fij + fj; >0 }
end
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Figure 3: Example of RFIM ground-state mapping to maximum flow prob-
lem in one-dimensional random field Ising model. Minimum cut of the sys-
tem is shown on broken line. Sink notation is used instead of target in
figure

4 Mapping RFIM to Maximum flow problem.

The idea behind mapping RFIM to Maximum flow problem is that we add
two new nodes to the system: the source s and the target t. The target
node (or spin) takes the value s; = —1 and the source spin take the value
ss = —1. Now we add new couplings between source/target and spins in the
system with the following way:

All sites with positive random field are connected to sink s (and negative
to target ¢):

I h; ifh; >0
7Y 0 ifh; <0

Lo =0
v |hz| if h; <0

Now our new RFIM Hamiltonian with two extra nodes is (with sg = —1
and sy =1) :

H=- Z JijSiSj. (5)
(3,5)€A

Energy of the Hamiltonian can be modelled by dividing the system to
two energy terms:
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Figure 4: Critical slowing down of Middleton ground-state algorithm close
to the phase transition in three dimension is shown (A, = 2.27, v = 1.37).
Subfigure shows that the lower-bound estimate for running time of algorithm
seems to work.

ES)=— > Ji+2 > Jij = Epuk+ Equ, (6)
(i,5)€A (1,9)€(S,S)

where Epi is the energy when all of the minimum exchange and the field
terms are satisfied and Ey,, is there since not all couplings J;; can be satisfied
simultaneously. Now our problem is to find ground-state of RFIM (e.g.
minimal cut on maximum flow problem).

5 Running times of Middleton algorithm

The algorithm Middleton [10] used in his study was a modification of push-
relabel algorithm introduced earlier in this summary. In the variant Middle-
ton used there was no source or target, but the algorithm used same ideas
(i.e. flow, excess, distance). Node with the highest d(i) was always chosen
in their algorithm, and if set with the highest sites becomes isolated on their
algorithm then all spins on set are connected to source. Global relabel up-
dates were used in their algorithm as well time by time i.e. distance to target
was calculated time by time as in preprocess in push-relabel algorithm.

Let us argue about the running time close to the phase transition (i.e.
when A > A.) The rearrangement of the spins scale with correlation lenght
¢ of our system. By this we can get the lower-bound estimate for the relabel
operations in our system. The size of distance difference (i.e. the number of
totlal relabels) in nodes should be at least £ in our system. For all L? spins



in our system we get the lower-bound estimate for the number of relabel
operations: L%.

Fig. 4 shows running times of RFIM ground-state algorithm close to
the phase transition in three dimensions. The figure shows the CPU time
needed per spin on 766 Mhz PIII vs. disorder, with different values of dis-
order. The inset plot show that the arguments on scaling of running time
A > A, case seems to be valid.
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