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I. INTRODUCTION

The vertex cover is a subset Vvc ⊂ V of vertices of a graph G(V, E) such that it contains at least one endpoint of
each vertex e ∈ E. Solving for the minimum vertex cover, i.e. one with the smallest number of vertices, is in general
an NP-complete problem. However, in practice many relatively simple algorithms are able to produce optimum or
nearly-optimum results with short running times for some instances of the graphs. In particular, the time complexity
depends heavily on the fraction of covered nodes for some algorithms [1] and thus on the structure of the graph. A
big part of the literature deals with the issue on the traditional random graph ensemble G(N, c/N).

In this summary, I go through the results of Ref. [2] by Vázquez and Weigt, where the minimum vertex-cover
problem is studied on general random networks with arbitrary degree distribution and degree–degree correlations.
In particular, the correlations are made tunable, and their effect on the minimum vertex-cover size and the replica
symmetry and breaking thereof of the system are discussed. In the end, the results are numerically applied to power-
law random graphs with positive correlations. These, up to some extent, resemble observations on real-world graphs
[3, 4], and solving for the minimum vertex cover on them has some applications in, for instance, network traffic
monitoring [5].

II. CORRELATED GENERALIZED RANDOM GRAPHS

Correlated generalized random graphs are a generalization of the Erdös-Renyi random graph ensemble (see, for
instance, [6]). The degree distribution can be arbitrarily chosen and given degree–degree correlations can be imposed.
To arrive at an ensemble of generalized random graphs, consider a set of undirected graphs with N vertices and an
arbitrary degree distribution pd. If one follows a randomly chosen edge, a vertex of degree d + 1 is recovered with
probability

qd =
(d + 1)pd+1

〈d〉
, (1)

where 〈d〉 is the average degree. The number of additional edges is called the excess degree.
Correlations between the degrees of adjacent vertices are incorporated as follows. In an uncorrelated graph, the

probability that a randomly selected edge connects two vertices of excess degrees d and d′ is (2 − δd,d,′)qdqd′ . The
prefactor 2 − δd,d′ comes from the fact that if d and d′ differ, vertices of degrees d and d′ can be found in two ways,
first one with degree d and the latter with degree d′ or vice versa. If d = d′, a similar effect does not take place. In
correlated nets, the above probability is generalized to the following form

(2 − δd,d′)edd′ , (2)

where edd′ is related to the conditional probability P (d|d′) that a vertex of excess degree d is arrived at following any
edge emanating from a vertex of excess degree d’

edd′ = qd′P (d|d′) . (3)

In this summary, the form

qdd′ = qd(rδd,d′ + (1 − r)qd′) (4)

is chosen, following [2], to facilitate easy generation of the graphs for testing purposes.
Such graphs can be generated using the so-called configuration model [3, 7]. For each node i draw a random degree

di from the probability distribution pd, restricted such that the sum of the degrees is even. Now create a set S of stubs

(or half-edges) where each node appears with multiplicity di. The cardinality of this set is now |S| = 2m, where m is
the number of edges. For each edge, select first a random stub with uniform probability. With probability r pair the
previously selected stub with a randomly selected one with the same degree. Otherwise, with probability 1 − r pair
the previously selected stub with a random one. The details of this procedure might affect the correlation properties
of the resulting graph, see Sec. V.



III. GENERAL LATTICE GAS ON GRAPHS

Consider an undirected graph with adjacency matrix Jij . A general lattice gas on such graph is defined by the
Hamiltonian

−βH =
∑
i<j

Jijw(xi, xj) + µ
∑

i

xi , (5)

where the microscopic degrees of freedom take two values, xi = 0, 1. The value xi = 1 is associated with a particle
lying on site i. The chemical potential is denoted by µ and the function w(xi, xj) describes the interaction between
the particles. The ferromagnetic Ising model can be recovered by choosing

w(xi, xj) = (2xi − 1)(2xj − 1) . (6)

In Ref. [2], Vazquez and Weigt perform a cavity calculation of the system, which they also apply to the minimum
vertex cover. In this summary, I will next go through the main parts of the calculation.
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FIG. 1: Notation for and illustration of the partition function calculation of Eqs. (7). Edge (i, j) has been removed and the
index k runs over all other neighbours of i except j. Eq. (8) is obtained similarly but by setting xi = 1.

Consider an undirected graph, and assume that it is locally treelike. Choose an arbitrary edge (i, j) and remove it.
Let index k run over all other neighbours of i except j and consider the subtree rooted in i. The notation is illustrated
in Fig. 1. The partition functions for this subtree can be written recursively as follows. Restricting the values of xi

to zero, the partition function can be written as

Z
(i|j)
0 =

∏
k 6=j|Jik=1

(ew(0,0)Z
(k|i)
0 + ew(0,1)Z

(k|i)
1 ) , (7)

where the restricted partition functions of the k-rooted subtrees can be considered independent since when the edges
(i, k) are removed, all k-rooted subtrees are independent because of the assumption that the graph is locally treelike.
Similarly, in the case of xi = 1 one gets

Z
(i|j)
1 = eµ

∏
k 6=j|Jik=1

(ew(1,0)Z
(k|i)
0 + ew(1,1)Z

(k|i)
1 ) , (8)

where now the contribution eµ comes from the presence of a particle at site i.
The effective fields are defined as

h(i|j) = ln
Z

(i|j)
1

Z
(i|j)
0

. (9)



To see the physical meaning of this quantity, consider an isolated particle in an external field described by the
Hamiltonian −βH = hx. For this particle, the restricted partition functions read Z0 = e0 = 1 and Z1 = eh, from
which the field can be calculated as h = ln Z1

Z0
. In this light, the field h(i|j) of Eq. (9) can be regarded as a generalization

of an effective local field for the general lattice gas. Using Eqs. (7) and (8), the effective fields obey the recursion
relation

h(i|j) = µ +
∑

k 6=j|Jik=1

u(hk|i) , (10)

where the auxiliary function u is

u(hk|i) = ln(
ew(1,0) + ew(1,1)+h(k|i)

ew(0,0) + ew(0,1)+h(k|i)
) (11)

Eq. (10) can be considered as fixed point iteration: given the fields for all vertices, one can substitute them on
the right-hand side, evaluate Eq. (10) and arrive at the iterated effective field for all sites. Roughly speaking, the
iteration converges to a well-defined limit distribution if there exists only a single fixed point. If this was not the
case, the huge number of the iteration variables would cause some fields approaching a solution while the rest another
one. Such a simple organization of the solution space is called replica symmetry, and thus the assumption that this
iteration converges corresponds to the assumption that the replica symmetry is not broken. Given this, the probability
distribution Pd(h) of the fields of vertices of degree d is given by the self-consistency equation

Pd(h) =

∫ ∞

−∞

d∏
l=1

(dhl

∞∑
d′=0

p(d′|d)Pd′ (hl))δ(h − µ −

d∑
l=1

u(hl)) , (12)

in which averaging over the ensemble has been performed.
Let us now turn back to the original problem of vertex covers. The lattice gas of Eq. (5) corresponds to a vertex

cover with the choice

ew(xi,xj) = 1 − xixj . (13)

In this setting, a particle (a site with xi = 1) corresponds to an uncovered site whereas and a site without a particle to
a covered one. Eq. (13) describes a vertex cover since the right-hand side is zero if and only if xi = xj = 1, i.e. when
two adjacent vertices are uncovered. In this case w(xi, xj) = −∞ and such configurations are thus not counted in the
partition function since e−βH = 0.

Minimum vertex covers are obtained when the particle number is at its maximum. Therefore, one takes the limit
µ → ∞ with z = h/µ fixed, substitutes Eq. (13) to Eq. (11), and arrives at

Pd(z) =

∫ ∞

−∞

d∏
l=1

(dzl

∞∑
d′=0

p(d′|d)Pd′(zl))δ(h − µ −

d∑
l=1

max(0, zl)) . (14)

By a clever Ansatz, Vazquez and Weigt have been able to solve this equation (see [2] for details). In short, the relative
size of the minimum vertex cover χc reads

χc = 1 −

∞∑
d=0

pd(1 − πd−1)
d−1(1 +

d − 2

2
πd−1) , (15)

where the auxiliary variables πd obey the self-consistency equation

πd =

∞∑
dl=0

p(dl|d)(1 − πdl

dl
) . (16)

In this solution, the physical interpretation of πd is that πd is the probability that an edge arriving at a vertex of
degree d + 1 carries a constraint, i.e. that it is not covered by the neighbouring vertex.

Eq. (16) is a similar fixed point iteration to Eq. (10), except that the former deals with degree classes (subsets of
vertices with the given degree d) instead of individual vertices. Nevertheless, convergence of Eq. (16) corresponds to
replica symmetry.



IV. NUMERICS

Having arrived at Eqs. (15) and (16), we are ready to set up a protocol of how to compute numerically the minimum
vertex-cover size for an ensemble of graphs with given degree distribution and correlations (Eq. (3)). The procedure
is as follows. First, iterate Eq. (16). If the iteration converges, substitute the obtained πd’s to Eq. (15) to obtain the
relative size of the minimum vertex cover. If the iteration fails to converge, the calculation in the previous section is
unable to produce meaningful results, and the conclusion is that the replica symmetry is broken.

To compare the results with numerical experiments on actual graphs, Vazquez and Weigt generate correlated random
graphs with a power-law degree distribution pd ∝ d−γ using the algorithm outlined in Sec. II. An approximation
of the minimum vertex cover is then created using a generalization of the leaf-removal algorithm [8]. In it, at each
step the vertex with minimum current degree is chosen, all its neighbours are covered. Then, the considered vertices
and all edges emanating from them are removed and the procedure is repeated. If the algorithm produces a vertex
cover without ever having to choose an edge with degree d ≥ 2, i.e. there is always a leaf to be removed with its only
neighbour covered, it has found a minimum vertex cover. Otherwise, when choosing a vertex with degree d an error
of at most d − 1 can be caused to the size of the minimum vertex cover. Therefore an upper bound for the error of
the algorithm is given by

E({d1, · · · , dk}) =
k∑

i=1

(dk − 1)(1 − δdk,0) , (17)

where k is the number of vertices chosen in the course of the computation, and dk the the degree of the kth chosen
vertex at the time of its selection.
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FIG. 2: Main figure: Relative minimum vertex-cover size for a single network with a power-law degree distribution and degree–
degree correlations given by Eq. (4). The black solid lines give the analytical solution for γ = 2.5 (upper curve) and γ = 3.0
(lower curve). The curves stop at the point where the iteration of Eq. (16) stops converging. The symbols are the numerical
estimates for γ = 2.5 (red circles) and γ = 3.0 (blue squares). The network size is N = 106. Inset: The upper bound for the
error (Eq. (17)). The figure is from Ref. [2].

The analytical solution is compared to the numerical experiments with the leaf-removal algorithm in Fig. 2. Power-
law degree distribution with exponent γ = 2.5 and γ = 3.0 has been used together with the correlations defined by
Eq. (4). The results show that when the correlation strength parameter r is increased, the iteration of Eq. (16) stops
converging at some point. Up to this point, the analytical solution is in quite good (although not perfect – see Sec. V)
agreement with the numerical experiments. Above that, these two cannot be compared since the analytical treatment
fails to give a solution.

In the inset of Fig. 2, the upper bound for the error of the leaf-removal algorithm (Eq. (17)) is plotted against
r in the same two example cases. The error starts deviating from zero at the same point where Eq. (16) ceases to
converge. The extensive cumulation of error of the leaf-removal algorithm has been associated with replica-symmetry
breaking. Thus, the fact that the failure to converge and the onset of the nonzero error occur at the same point
support the conclusion that the point is associated with replica-symmetry breaking. There is, however, a suspicious
discrepancy between the main figure and the inset. Namely, the difference between the analytical result and the
numerical experiments in the main figure is clearly at least an order of magnitude greater than the algorithmic error



in the inset. The authors of Ref. [2] state that this is due to “finite-size corrections resulting mainly from a degree
cutoff” . For another possible explanation, see the discussion in the next section.

V. DISCUSSION

The results have some consequences regarding applications. First, the benchmark networks used have properties in
common with real-world networks. Fat tails of the degree distribution have been widely observed (see, for instance,
[4]), and the power-law form serves as a good approximation for them. A reasonable example is the topology of the
Internet at the autonomous systems level, where power-law degree distributions have been measured with γ ≈ 2.2 [9].
Real-world graphs are often also correlated. Assortative correlations, i.e. the tendency of the vertices to be connected
to vertices with a similar degree, are usually associated with social networks whereas disassortative correlations are
associated with technological networks and those related to traffic [10].

Second, one application of minimum vertex covers is network traffic monitoring. Here, one wants to deploy obser-
vation points on a network in which vertices are routers and edges the physical links connecting the routers, such
that each edge can be directly observed [5]. The least costly setup of the observation points is therefore the minimum
vertex cover, and a step in such studies is to compute or estimate it. The results of Vázquez and Weigt point out
that computing the minimum vertex cover should be easy for such graphs with the generalized leaf-removal algorithm
since the correlations in such nets are typically negative (r is negative).

The statement in the previous paragraph is not, however, completely true. In technological nets, the correlations
are often disassortative [10]. In the current setting, this would translate to negative values of r (since at r = 0 there
are no correlations). However, this regime cannot be obtained directly by the means utilised by Vázquez and Weigt,
since in the network generation procedure, r has an interpretation as a probability and thus it has to be non-negative.
Widening the approach to deal with negative r could be an interesting starting point for further studies.

One has to be also careful with generating correlated graphs especially when fat-tailed degree distributions are
involved. Eq. (4) certainly describes the creation procedure of the networks, but it is not immediately clear that it
consequently describes the correlations in the resulting network. To see this, consider creating a power-law random
graph where correlations are absent. At first glance, one would just set edd′ = qdqd′ instead of Eq. (4) and proceed as
above. However, Catanzaro et al. have pointed out that this, in fact, results in correlated graphs due to topological
constraints [11]. In other words, the fact that all stubs of highly connected nodes have to be connected somewhere
creates limitations in the overall connection structure, which, in turn, produces degree–degree correlations. This can
be overcome by forcing a suitable upper cutoff for the degree [11]. Unless this phenomenon has been taken into
account by the authors of Ref. [2], it provides another possible explanation for the discrepancy between Fig. 2 and its
inset.
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