
Calculation of typical running time of a branch-and-bound

algorithm for the vertex-cover problem

Joni Pajarinen, Joni.Pajarinen@iki.fi

October 21, 2007

1 Introduction

The vertex-cover problem is one of a collection of NP-complete problems studied actively in the
science community. The problem’s solving time is in the worst case exponential, but the running
time varies for different vertex-cover realizations. From experimental data, different phases can
be identified for the running time and the analysis of vertex-cover algorithms back the observed
results up. Interestingly the worst-case typical average solutions are located at the xc(c) phase
boundary, which is studied analytically in the book [2] and in the paper [3]. This summary is
based on these two documents.

We start by giving a short description of the vertex-cover problem and introducing symbols
related to the problem. We proceed and introduce a branch-and-bound algorithm for finding
vertex covers of a given size for a graph. Experimental results are displayed in order to show
the running time landscape we are dealing with. The experimental results show different phases,
which can be studied analytically further. The vertex-cover algorithm’s traversal of the configu-
ration tree is explained. The relationship between different kinds of configuration tree traversals
and the phases shown in the experimental results is described.

The analysis of the vertex-cover algorithm is started by introducing the first-moment method.
The method provides us with a lower bound for the xc(c) phase boundary for large c values. It also
shows a general way of using the average as a bound that can be exploited in similar situations.
We start the analysis of the typical running time by examining the behaviour of the algorithm
during the first descent into the configuration tree. This produces results that can be used to
find the nodes in the configuration tree, where a solution is unrecoverable and a subtree must
be backtracked. In the backtracking analysis the typical running time for the largest subtree is
approximated. This yields an analytical solution for the typical running time in the backtracking
phase. The analytical results are compared to the experimental results presented before.

As the last step in this paper, a summary of the most important results is given.

2 A branch-and-bound algorithm for the vertex-cover prob-

lem

In this section we will quickly describe the vertex-cover problem and outline a branch-and-bound
algorithm for finding a vertex-cover of a maximum size for a graph. Typical running time
experimental data for the branch-and-bound algorithm from simulation runs is presented and
the relationship of the configuration tree traversal to the typical running time of the algorithm
is discussed.

1

Joni.Pajarinen@iki.fi

2.1 Vertex-cover problem

A graph is denoted by G = (V, E). V is the set of vertices and E is the set of edges. Graphs can be
sampled randomly from either a fixed number N of vertices and fixed amount of edges M ensemble
G(N, M), where each possible edge has the same probability of appearance, or from an ensemble
G(N, p), where N is the fixed amount of vertices and p the edge probability. A graph sampled from
the ensemble G(N, p) does not have a fixed number of edges. A valid vertex cover covers vertices
so that all edges connect to at least one covered vertex: Vvc ⊆ V : i ∈ Vvc ∨ j ∈ Vvc, ∀(i, j) ∈ E.
The minimum vertex-cover is then argmin

Vvc

|Vvc|. The size of the largest allowed vertex-cover

is xN , where x ∈ [0, 1] and N = |V |. x is used here in the vertex-cover size, because it is
independent of graph size.

2.2 A branch-and-bound vertex-cover algorithm

The branch-and-bound vertex-cover algorithm goes through different partial vertex covers by
marking vertices as either covered or uncovered at each step. It backtracks if it reaches a state,
where all the available covering marks xN have been used. The goal is to find a vertex-cover
of size at most xN . The algorithm terminates, when it has found a valid vertex-cover or if it
has gone through all possible configurations. The process of the algorithm is described by an
configuration tree. In the configuration tree a node specifies the current state of all the vertices
of the graph.

All vertices are marked as free at the start of the algorithm. The algorithm proceeds by
marking a random free vertice as covered if the vertex has free or uncovered neighbours. If the
xN covering marks are not all used, the algorithm can go on with the tree traversal, otherwise
it has to backtrack. If the algorithm returns to the node by backtracking, then the vertex is
uncovered and the other branch in the configuration tree is taken. If a node’s all neighbours are
covered, it is first marked as uncovered. A simple bound is used to prune the configuration tree:
don’t mark a vertex uncovered, if it has uncovered neighbours.

In the example figure 1 marking a vertex covered is equal to a left branch in the configuration
tree and as uncovered is equal to a right branch.

2.3 Experimental results, traversal of the configuration tree

Figure 2 displays experimental results from running the branch-and-bound algorithm on the
vertex-cover problem. The simulations were performed by sampling graphs from the ensemble
G(N, c

N
). Here N is the number of vertices, c the average vertex degree and p = c

N
the edge

probability. For each x value graphs were sampled from the ensemble and the algorithm run on
each graph. The typical running time was calculated as the normalized and averaged logarithm
of the number of configuration tree nodes, that the algorithm had to process. In the figure two
exponential phases (C, B) and one linear phase (A) are clearly to be seen. The exponential
phases C and B are separated by the static phase boundary xc(c). xc(c) is the phase boundary
value, below which a random graph almost surely has no vertex cover of size xN and above
which a random graph almost surely has a vertex cover of size xN , in the thermodynamic limit
N → ∞. The exponential phase B and the linear phase A are separated by the dynamical phase
boundary xb(c). The worst case typical running time is observable at the static phase boundary
xc(c).

Figure 1 shows example configuration trees for the branch-and-bound algorithm in the three
different phases. In the sub figure A, the example solution (black circle) is found during the first
descent into the configuration tree. Here we don’t have to backtrack at all and the solution time

2

Figure 1: Example configuration trees. The three sub figures A, B and C show examples of configuration

trees in the three different phases. In sub figure A the black circle is an example solution in the easy

recoverable phase, where only a straight or almost straight descent is necessary. The black circle in sub

figure B is an example solution in the hard recoverable phase, where we have to backtrack to the circle

pointed to by the arrow. In sub figure C, in the hard unrecoverable phase, we have to traverse the tree

until we know a solution can’t be found (to the long dashed line).

is obviously linear. The probability for the algorithm to find a solution in linear time is larger,
the larger the maximum vertex-cover size xN is. This linear running time can be observed as
phase A in figure 2. The example solution (black circle) in the sub figure B had to be found by
backtracking. The algorithm had to backtrack the whole left subtree of the node pointed to by
the arrow. This is the exponential coverable phase B shown in figure 2. The long dashed line
in sub figure C shows the depth of the traversal of the configuration tree, when the maximum
vertex-cover size xN is so small that a solution can’t be found from the graph. This case can be
seen in figure 2 as the unrecoverable exponential phase C in terms of typical running time.

3 First-moment method

In this section we will show a method for calculating a lower bound on the static phase boundary
xc(c). We will use a graph ensemble G(N, M) with fixed vertex N and edge number M = c

2N .
This should give a reasonable result, because even if we would use the graph ensemble G(N, p),
with the specified edge probability p = c

N
, the edge number would concentrate around the edge

average M = c
2N in the thermodynamic limit.

An upper bound for the probability that graph G has a vertex-cover can be obtained by using
the average number of vertex-covers. This also explains the name of the method.

P (∃Vvc(G), |Vvc(G)| = xN) ≤ Nvc(G, xN)

This bound holds, because a graph with a vertex-cover contributes 1 on the left hand side
and its number of vertex-covers on the right hand side. Another way to look at it is, that the
average is the probability weighted with the number of vertex-covers (≥ 1).

3

Figure 2: Experimental results for typical running time and the analytical solution. τ (x|c) =

limN→∞

1

N
ln tbt(G̃, x̃) is the normalized and averaged logarithm of running time. C and B are the

exponential phases and A is the linear phase. Dynamic phase boundary xb(c) and the static phase

boundary xc(c) are also shown.

Original figure is from [3].

4

The number of potential vertex covers V ∗
vc is

(
N

xN

)

, because we try to cover xN vertices

with the available covering marks from the total of N vertices in the graph. In V ∗
vc the probability

that both vertices of an edge are uncovered is (1 − x)2 and that at least one is covered is
1 − (1 − x)2 = x(2 − x). If we consider that a potential vertex-cover must cover all edges, for it
to be a valid vertex-cover, then we get the average vertex-cover number as

Nvc(G, xN) =

(
N

xN

)

[x(2 − x)]
︸ ︷︷ ︸

P (edge covered)

edges

︷︸︸︷
c

2
N

This gives us

Nvc(G, xN) =

(
N

xN

)

[x(2 − x)]
c

2
N

=
N ! [x (2 − x)]

c

2
N

(xN)! [(1 − x) N]!

= e{ln(N !)+ c

2
N ln[x(2−x)]−ln[(xN)!]−ln[{(1−x)N}!]}

Stirling’s ap-
proximation
ln(N !) ≃
N lnN − N

≃ e{N[−x lnx−(1−x) ln(1−x)+ c

2
ln{x(2−x)}]} (1)

Now we have in the exponent a value, which determines in the thermodynamic limit (N → ∞),
whether the average is zero or above zero. The exponent changes sign at xan(c) < xc(c). xan(c)
is a lower bound on xc(c), because for values smaller than xan(c) the average Nvc(G, xN) goes
in the thermodynamic limit to 0 and there is no vertex-cover.

0 = −xan (c) lnxan (c) − (1 − xan (c)) ln (1 − xan (c)) +
c

2
ln {xan (c) (2 − xan (c))} (2)

The asymptotic for xan(c) for large average degree c is given by

xan(c) = 1 − 2
ln(c)

c
+ O

(
ln {ln(c)}

c

)

and the precise asymptotic is calculated in [1]:

xc(c) = 1 −
2

c
(ln(c) − ln {ln(c)} − ln(2) + 1) + o(c−1)

xan(c) ∈ [0, 0.5] plotted using the equation 2 is shown in figure 3. Comparing xan(c) with
xc(c) shown in figure 4 hints that xan(c) really is a lower bound for xc(c).

4 Typical running time analysis

4.1 Analysis of first descent into the configuration tree

This subsection deals with analysing the first descent into the configuration tree, i.e. the linear
phase, where no backtracking occurs. When searching for a vertex-cover in the graph G ∈
G(N, c

N
), we consider covered vertices and edges as removed from the graph. Thus at time step

T , the current graph is G ∈ G(N − T, c
N

). The graph at time step T remains a random graph,
because the order of vertex removal is random. For some heuristics this is not true. In each
step exactly one vertex is removed from the graph and at time step T the average edge degree is

5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x a
n(

c)

c

xan(c)

Figure 3: xan(c) ∈ [0, 0.5] plotted using equation

0 = −xan (c) ln xan (c) − (1 − xan (c)) ln (1 − xan (c)) + c

2
ln {xan (c) (2 − xan (c))}

c(T) ≃ (N − T) c
N

= (1 − T
N

)c, because the edge probability p = c
N

remains the same over time.

We use rescaled time t = T
N

, which is continuous in the thermodynamic limit. Using a rescaled
time simplifies the calculations. The current graph is then G ∈ G((1 − t)N, c

N
).

Because covering marks are put on all vertices except isolated ones, we are interested in the
probability that a vertex is not isolated. This can be calculated with the static edge probability
and with the number of possible edge endpoints at time t. For a single vertex at time t:

P (vertex is not isolated) = 1 −
(

1 −
c

N

)

︸ ︷︷ ︸

P (no edge)

possible edge endpoints

︷ ︸︸ ︷

(1 − t)N − 1

= 1 − e{((1−t)N−1) ln(1− c

N)} ≃ 1 − e{(1−t) limN→∞ N ln(1− c

N)}

= 1 − e{(1−t) limN→∞ −N c

N } = 1 − e{−(1−t)c}

With the probability that a vertex is not isolated, i.e. that a vertex is covered, we can
calculate the amount of available covering marks by subtracting from the original covering mark
amount the amount used at time t:

X(t) = xN − N

∫ t

0

P (vertex is not isolated)dt′

6

= xN − N

∫ t

0

(

1 − e{−(1−t)c}
)

dt′

= xN − Nt + N
e−(1−t)c − e−c

c

x(t) is the amount of available covering marks at time t divided by the amount of vertices at
time t. The average vertex degree decreases linearly with time. Putting this together gives us
the trajectory for the first descent:

c(t) = (1 − t)c

x(t) =
X(t)

N(t)
=

x − t

1 − t
+

e−(1−t)c − e−c

(1 − t)c

Figure 4 displays trajectories in the (x, c) plane. Phase boundary xb(c), displayed in the
figure, can be calculated by setting x(t′) = 1 and then t′ = 1:

x(t′) = 1 ⇒ 1 =
xb(c) − t′

1 − t′
+

e−(1−t′)c − e−c

(1 − t′)c

⇔ 1 − t′ = xb(c) − t′ +
e−(1−t′)c − e−c

c

t′ = 1 ⇒ 0 = xb(c) − 1 +
1 − e−c

c

⇔ xb(c) = 1 +
e−c − 1

c

If x starts below this boundary, an exponential running time is to be expected, because the
first descent does not find a solution.

4.2 Backtracking analysis

The coverable exponential running time phase B is shown in figure 2. In this phase backtracking
occurs, when there are not enough covering marks available to cover the remaining random
subgraph. Backtracking analysis can be difficult, because of configuration tree node dependencies.
The problem is approached level by level of the configuration tree and the number of nodes at
each level is taken into account. This is feasible, because the computation time depends on the
number of nodes, but not on the order they are gone through.

At time t̃ the remaining covering marks x̃Ñ of the first descent are not enough. From the
point of view of the configuration tree, the configuration tree node at time t̃ is pointed to by the
blue arrow in the example figure 1. xc(c) and the first descent cross at time t̃ at (x̃, c̃). At time
t̃ there are x̃Ñ covering marks remaining. As discussed in the previous section, we always have
a random graph, when first descending the configuration tree and removing randomly selected
vertices and edges. The subgraph at time t̃ is G̃ ∈ G(Ñ , c̃

Ñ
) and it must be backtracked in

exponential time, because it has no solution. The subgraph G̃ dominates the running time,
which can be approximated with the amount of nodes in the subgraph.

7

Figure 4: First descent into the configuration tree. Dotted line is xb(c) and long dashed line is xc(c).

The lines start at c = 2.0. The symbols are numerical results from a random graph with 106 vertices.

Figure is from [3].

8

From the experimental data we know that exponential solution times are log-normal dis-

tributed for large N. The typical solution time is eNτ(x,c). Denote with tbt

(

GÑ, c̃

Ñ

, x̃
)

the back-

tracking time of the uncoverable GÑ, c̃

Ñ

. The normalized averaged logarithmic running time is

the quenched average τ(x, c) = limN→∞
1
N

ln
[

tbt

(

GÑ, c̃

Ñ

, x̃
)]

. Here the logarithm enforces that

we obtain the typical running time, because the solution times are log-normal distributed. The
backtracking time is upper bounded by the number of leaves of the subtree times the number of
vertices in the subgraph tbt ≤ ÑNl. The linear Ñ ∈ O(N) contribution can be discarded and we
just use the number of leaves to approximate the exponential subgraph running time:

τ(x, c) ≤ lim
N→∞

1

N
ln

[

Nl

(

GÑ, c̃

Ñ

, x̃
)]

The number of leaves is upper bounded by the distribution of remaining covering marks on

the remaining vertices

(
Ñ

x̃Ñ

)

. Similar to the calculations done in equation 1 we get for the

unbounded version of the algorithm

τ(x, c) ≤
c

c̃
{x̃ ln x̃ + (1 − x̃) ln (1 − x̃)}

For the bounded version of the branch-and-bound algorithm, we have to take into account
the level at which the bound stops the traversing of the configuration tree. We mark with κÑ

the level in the subtree, where the bound becomes effective. Omitting a lot of calculations the
result for the bounded version is presented here:

τ(x, c) ≃ max
κ=x̃,...,1

[
c

c̃
κsan

(
x̃

κ
, c̃κ

)]

(3)

san(x∗, c∗) = −x∗ lnx∗ − (1 − x∗) ln(1 − x∗) +
c∗

2
ln(x∗ [2 − x∗])

The typical running time is approximated with the largest subtree by finding the saddle point
3 on the κ value. Figure 2 shows also this analytical result. It is worth noting that the analytical
results seem to fit well with the experimental data.

5 Summary

A simple branch-and-bound algorithm was introduced for the vertex-cover problem. Experi-
mental data of typical running times for the algorithm was shown. Two exponential dynamical
phases and one linear phase were discernible from the data.

The first-moment method was explained and a lower bound on xc(c) was constructed by using
the average vertex-cover amount as an upper bound for the vertex-cover probability of a graph.

Analysis of the first descent vertex-cover algorithm was done and (x, c)-trajectories of first
descent runs were analysed and experimental data of them displayed. The dynamic phase bound-
ary xb(c), which shows where exponential solution times start occurring, was calculated. In the
analysis, important steps were the considering of the current graph with covered vertices and
edges removed, calculating the probability for a not-isolated vertex and calculating the amount
of available covering marks at a time step, using a continuous (in the thermodynamic limit)
rescaled time.

In the backtracking analysis the typical running time was calculated for the unbounded version
of the algorithm using the amount of leaves in the backtracking subtree. For the bounded version

9

the typical running time was found by considering the largest subgraph that was possible with
the bound effective.

References

[1] A. M. Frieze. Discr. Math., 81(171), 1990.

[2] Alexander K. Hartmann and Martin Weigt. Phase Transitions in Combinatorial Optimization

Problems. WILEY-VCH, 2005.

[3] Martin Weigt and Alexander K. Hartmann. Typical solution time for a vertex-covering
algorithm on finite-connectivity random graphs. Physical Review Letters, 86(8), February
2001.

10

	1 Introduction
	2 A branch-and-bound algorithm for the vertex-cover problem
	2.1 Vertex-cover problem
	2.2 A branch-and-bound vertex-cover algorithm
	2.3 Experimental results, traversal of the configuration tree

	3 First-moment method
	4 Typical running time analysis
	4.1 Analysis of first descent into the configuration tree
	4.2 Backtracking analysis

	5 Summary

