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1 Introduction

The 3-SAT problem is one of the well-known NP-hard problems that have been
extensively studied over the years. Its generalisation, the k-SAT problem, is
NP-complete for k > 2. In addition to being interesting from a theoretical
viewpoint, 3-SAT also plays a role in industrial applications, such as boolean
circuit verification. It is therefore of special interest to develop efficient solvers
for reasonable problem sizes.

Although 3-SAT is NP-hard in general and all known algorithms for solving
it require an exponential runtime in the worst case, it was recently observed
that the performance of current state-of-the-art solvers over an ensemble of
problem instances (determined by the range of different parameters, such as the
ratio of clauses to variables) does not behave uniformly, but changes suddenly
at critical parameter values. This sudden change in typical problem difficulty
behaves similarly to an effect that is known from physics as phase transition.
In order to understand changes in runtime performance that are connected to
the structure of the underlying problem, models from physics provided useful
information.

This seminar paper considers several recent publications that consider the
application of spin-glass models to the generation of hard instances for the 3-
SAT problem. The foundation on a structural model such as spin-glass models,
which are well-known from physics, allows the analysis of the hardness of the
problem from a statistical mechanics viewpoint.

1.1 3-SAT

Consider a given boolean formula F over a set {xi|i = 1, . . . , N} of N boolean
variables. The formula is assumed to be given in Conjunctive Normal Form

(CNF), i.e. as a conjunction of disjunctions as described below. F consists of
conjunction of a set C = {Cµ|µ = 1, . . . ,M} of M logical clauses Ci. The ratio
of M to N is denoted by α. Each clause is a disjunction of 3 literals, which are
either direct or negated appearances of variables xi. No variable appears twice
in any clause. The task of the 3-SAT problem is to answer the question whether

1



there exists an assignment A that defines mappings xi 7→ {true, false} ≡ {1, 0}
s.t. F evaluates to true.

1.2 Solvers

When considering solvers for boolean satisfiability problems, one has to dis-
tinguish between complete and incomplete solvers. Whereas complete solvers
provide a complete coverage of the solution space, incomplete solvers typically
maintain a current solution and aim at improving this particular solution during
the run of the algorithm. For incomplete solvers, however, in general one can
not guarantee that they will always find a satisfying truth assignment if the
given formula is satisfiable.

As examples for complete solvers one should mention zChaff and Satz and
for incomplete solvers WalkSAT, Record-to-Record Travel (RRT) and Survey
Propagation (SP). As the range of problem instances to which incomplete solvers
can be applied to is typically larger than the range of problems complete solvers
are applicable to (due to the exponential size of the search space), it is of special
interest to evaluate the performance of incomplete solvers on hard instances
which are known to have satisfying truth assignments. In order to keep the
effort for generating the instances low, it is not feasible to generate random
instances and check them for satisfiability using complete solvers before using
them as input to incomplete solvers.

2 Instance-generation algorithms

This section discusses several methods for generating random instances of the
3-SAT problem that are supposed to be hard for complete and particularly
for incomplete solvers. The papers that have been considered for this seminar
are the work done by Barthel et al. [1] and by Jia, Moore, and Selman [2].
In addition to the two papers, the work by Achlioptas, Jia, and Moore [3] is
also mentioned within the context of a special case of the random generation of
clauses proposed in [1].

2.1 Uniform random clause generation

As a possible candidate for generating random 3-SAT instances in CNF, one can
consider the following procedure: First, one picks a random truth assignment
A. Initially the set of clauses C is empty. In each iteration of the algorithm,
one aims at adding a newly created random clause Ci to C until M clauses
have been added. The clause Ci is comprised of three variables with indices
1 ≤ i, j, k ≤ N that are selected uniformly at random (without replacement).
For each of the indices one flips a coin whether the corresponding variable will
be included directly or negated in the clause. If the assignment A evaluates
the clause Ci to true, Ci is added to C and the algorithm proceeds to the next
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iteration. Otherwise, the clause Ci is discarded and the previous iteration is
repeated.

If one considers the methods for random clause generation described above,
one notices that each variable appears on average in 4/7 of all cases with the
same value as in the assignment A and in 3/7 of all cases with the opposite
value. The algorithm therefore induces an imbalance towards the satisfying
assignment.

One possibility to avoid the drift described above is to hide in addition to
A also the complementary assignment Ā, which means one also discards the
clause that is not satisfied by Ā. This approach was followed in [3]. However,
this method introduces a strong dependence of the performance of incomplete
solvers, such as WalkSAT, on the quality of the initial assignment. It is also the
case that these problem instances are still solved by WalkSAT in time polyno-
mial in the number of variables [1].

2.2 Generation of random 3-SAT instances based on spin-

glass model for 3-SAT

2.2.1 Spin-glass model for 3-SAT

Spin-glass models originate from physics and can be used to study properties
of materials such as magnetisation under external influences, such as magnetic
fields or system temperature changes. They have been successfully applied to
different optimisation problems that arise from practical applications but also
to classical problems, such as 3-SAT, for example in the paper by Barthel et
al. [1].

In general, a spin glass consists of a N Ising spins that can take two values,
−1 or 1. The energy of a spin-glass configuration or state s is equal to the value
of the Hamiltonian H for s.

H(s) = C −
N

∑

i=1

Hisi −
∑

i<j

Tijsisj −
∑

i<j<k

Jijksisjsk (1)

In this case we consider interactions between pairs and triplets of spins. The
coefficients H, T and J in general can take any real values and the coefficient H
is also called the external field. States that minimise the Hamiltonian are called
ground states.

The task of deciding whether a given 3-SAT formula is satisfiable or not
can be formulated as finding ground states for a particular spin glass whose
spins corresponds to the boolean variables and whose Hamiltonian counts the
number of unsatisfied clauses. If the Hamiltonian attains the value zero for a
certain configuration, one can conclude that the corresponding truth assignment
satisfies the given 3-SAT formula. Thus, the Hamiltonian H takes the form

H =

M
∑

µ=1

1

8

N
∏

i=1

(1 − c(i)
µ si),
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where the coefficients c
(i)
µ are defined as

c(i)
µ =

{

+1 if xi appears directly in Cµ.

−1 if xi appears negated in Cµ.

The boolean variables xi are mapped to spins si by the mapping si = (−1)1−xi ,
which maps the value 0 for false to the spin value -1 and the value 1 for true to
the spin value 1.

For the interaction coefficients and the constant C in (1) one obtains

C =
M

8
=

α

8
N, Hi =

1

8

M
∑

µ=1

c(i)
µ , (2)

Tij = −
1

8

∑

µ

c(i)
µ c(j)

µ , Jijk =
1

8

∑

µ

c(i)
µ c(j)

µ c(k)
µ .

2.2.2 Clause generation process

Barthel et al. consider a generation process that utilises a probability distribu-
tion over the set of clauses satisfied by a given assignment A. Here, A is the
assignment to be hidden in the random formula and without loss of generality it
is assumed that A is the assignment xi = 1 ∀i. Note, however, that the hidden
assignment is arbitrary as one can define variables yi = x̄i ⊕ ai, where the ai

are random boolean values. In this case a satisfying assignment is the one that
matches exactly the value of the random vector a, as the formula is satisfied if
yi = 1 ∀i, which corresponds to xi = ai ∀i.

All clauses with the same number of negated variables (clause type) appear
with equal probability by definition. The basic algorithm for constructing the
problem instance is very similar to the method described in Section 2.1. In each
iteration of the algorithm, one aims at adding a newly created random clause
Ci to C until M clauses have been added. The clause Ci is comprised of three
variables with indices 1 ≤ i, j, k ≤ N that are selected uniformly at random
(without replacement). However, instead of flipping a coin whether or not the
variable will appear negated in the clause, each clause is generated according
to the probabilities shown in Table 1. Note that the only clause that is not
satisfied by the assignment A (the clause in which all variables appear negated)
has probability zero of being constructed.

The generation probabilities pi for each of the possible clause types have to
fulfil the constraints

0 ≤ pi ≤ 1 ∀i ∈ {1, 2, 3}, p0 + 3p1 + 3p2 = 1.

The range of possible pi can be analysed within the context of the spin-glass
model described above. For the interaction coefficients in (2) one obtains the
following statistical averages.

Hi =
3α

8
(p0 + p1 − p2) , Tij =

3α

4N
(−p0+p1+p2), Jijk =

3α

4N2
(p0−3p1+3p2)

(3)
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Clauses Probability
(xi ∨ xj ∨ xk) p0

(xi ∨ xj ∨ x̄k), (xi ∨ x̄j ∨ xk), (x̄i ∨ xj ∨ xk) p1

(xi ∨ x̄j ∨ x̄k), (x̄i ∨ xj ∨ x̄k), (x̄i ∨ x̄j ∨ xk) p2

Table 1: Generation probabilities for different types of clauses. Note that the
clause (x̄i ∨ x̄j ∨ x̄k) is not satisfied by the assignment and therefore discarded.

2.2.3 Observations for different generation probability ranges

The first interesting observation that the spin-glass model allows, is the case of
equal generation probabilities for all clauses that are satisfied by the assignment
A, as it was described in Section 2.1. In this case one chooses p0 = p1 = p2 =
1/7. Based on the spin-glass model discussed previously, one observes that
the average value for the external field Hi is non-zero. More precisely, one
obtains that Hi = 3α/56, so that incomplete methods, such as WalkSAT, are
guided by the field towards the hidden assignment. Therefore, in order to create
instances which do not reveal any information about the satisfying assignment,
it is beneficial to add the constraint

p0 + p1 − p2 = 0,

which forces the external field to be zero. Resulting from the previous restric-
tion, one obtains the following inequality and equalities that the pi have to
fulfil.

0 ≤ p0 ≤
1

4
, p1 =

1 − 4p0

6
, p2 =

1 + 2p0

6
(4)

The second case that can be considered interesting is the situation in which
the complementary assignment A is hidden in the formula in addition to the
satisfying assignment A, which was also described in Section 2.1. This gener-
ation method can be modelled by choosing p0 = 0 and p1 = p2 = 1/6. For
this particular choice of generation probabilities the interaction coefficient Jijk

vanishes. One observes that the backbone (the value of variables that is the
same in any satisfying assignment) is formed only at relatively high values of
α and only then starts to appear continuously. Further analysis in [1] reveals
that at the point of appearance of the backbone, the system has already entered
a ferromagnetic phase with increased magnetisation of spins on average, which
makes the backbone in some sense easier to spot for local algorithms. Indeed,
WalkSAT shows good performance when run on formulas that were obtained
in this region of the problem instance space, as one can observe from Fig. 1.
Recall that finding the backbone is one of the major obstacles for incomplete
algorithms, as choosing the value of only one variable permanently different
from the value in the backbone renders the search for a satisfying assignment
unsuccessful.

When choosing p0 6= 0, the hardness of the resulting instances changes dra-
matically. As a special case one can consider choosing p0 = p2 = 1/4 and p1 = 0.
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Figure 1: Performance results for runs of WalkSAT on instances generated with
p0 = 0 and p1 = p2 = 1/6; picture taken from [1].

It turns out that the resulting instances are from the category of random satis-
fiable 3-XOR-SAT formulas, which means that the clauses can be rewritten to
the form xi ⊕ xj ⊕ xk. It has been shown previously that this type of problems
can be solved efficiently with a polynomial time algorithm similar to the Gauss
elimination method for solving linear equations. If one considers random in-
stances from this domain, however, incomplete methods such as WalkSAT show
an exponential execution time on average. A possible reason for this behaviour
can be found in the discontinuous formation of the backbone which occurs al-
ready at lower values of α, where the magnetisation is low as well. A further
investigation of the hardness of 3-XOR-SAT formulas is discussed in the fol-
lowing section. See Fig. 2 for the results that were obtained for this choice of
parameters.

The range (0, 1/4) for p0, excluding the boundary values, results in very
different instances. For 0.077 . p0 < 1/4 the results presented in [1] show
that the formation of the backbone happens discontinuously. This effect is a
potential reason for the observation that incomplete methods, such as WalkSAT,
have difficulties in this region to find satisfying assignments and typically require
an exponential running time.

2.3 Generation of instances based on triangular lattice

spin glass

2.3.1 Spin-glass model for 3-XOR-SAT

Jia, Moore, and Selman [2] consider an Ising spin-glass model on a triangular lat-
tice structure with nearest-neighbour interaction and short loops. From physics
is already known that this kind of model shows glassy behaviour, in terms of its
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Figure 2: Performance results for runs of WalkSAT on instances generated with
p0 = p2 = 1/4 and p1 = 0; picture taken from [1].

Hamiltonian having a large number of local minima with high-energy barriers
between them. However, due to the regular structure of the model, one can say
a lot more bout the hardness of 3-SAT instances that result from it.

The connectivity structure of the spin-glass model discussed in this section
is a L × L rhombus with periodic boundary conditions and its Hamiltonian H
is defined as

H(s) =
1

2

L−1
∑

i,j=0

si,j · si,j+1 mod L · si+1 mod L,j , (5)

where the summation runs over all downward pointing triangles in the lattice.
Figure 3 depicts a triangular lattice with side length L = 22 and indicates the
nearest-neighbour interactions between nodes on a downward pointing triangle.
The periodic boundary conditions are omitted from the picture for the sake of
clarity.

The Hamiltonian (5) can be rewritten using boolean variables xi,j that are
obtained from the spins by the mapping xi,j = 1

2 (si,j + 1). Up to a constant
one obtains

H =

L−1
∑

i,j=0

((xi,j + xi,j+1 mod L + xi+1 mod L,j) mod 2). (6)

Note that this representation corresponds to L2 3-XOR-SAT clauses of the
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L

L

Figure 3: Triangular lattice with L = 22 and spin interactions; the arrows
are indicating the triangles of the spins interacting with each other; periodic
boundary conditions are omitted for the sake of clarity.

form

xi,j ⊕ xi,j+1 mod L ⊕ xi+1 mod L,j

≡ (x̄i,j ∨ xi,j+1 mod L ∨ xi+1 mod L,j) ∧ (xi,j ∨ x̄i,j+1 mod L ∨ xi+1 mod L,j)∧

(xi,j ∨ xi,j+1 mod L ∨ x̄i+1 mod L,j) ∧ (x̄i,j ∨ x̄i,j+1 mod L ∨ x̄i+1 mod L,j).

The resulting representation is a 3-SAT formula with L2 variables and 4L2

clauses and the Hamiltonian H counts the number of unsatisfied clauses. The
assignment xi,j = 0 ∀i, j is always satisfying and one can show that it is indeed
the unique satisfying assignment if L = 2k [4]. Note that, as discussed previ-
ously, the hidden assignment is arbitrary if one defines variables yi,j = xi,j⊕ai,j ,
where the ai,j are random boolean values. The problem of finding a satisfying
assignment is solvable in polynomial time by Gauss elimination modulo 2 but
for local solvers the problem of finding a satisfying assignment is challenging.

2.3.2 Hardness of formulas for SAT solvers

Note that a satisfying assignment which corresponds to a ground state of the
Hamiltonian (5) implies

xi,j+1 mod L = xi,j ⊕ xi+1 mod L,j , (7)

so that in fact the boolean values are given by Pascal’s triangle modulo 2. In
order to determine the hardness of the resulting boolean formulas, one can con-
sider an assignment A′ that unsatisfies exactly one clause. Define the variables
di := xi,j ⊕ xi,j+1 mod L ⊕ xi+1 mod L,j , which we call defects. Figure 4 depicts
such a configuration. One should note that in order to satisfy the remaining
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Figure 4: Spin glass configuration with a single defect corresponding to an
unsatisfied clause; white cells corresponds to 0 values, black cells correspond to
1 values.

clauses, a certain number of variables have to be set to the value 1, as indicated
in the figure. It can be shown that the number of ones in the resulting assign-
ment is Llog

2
3, which is also the Hamming distance to the satisfying assignment,

xi,j = 0 ∀i, j [4]1.
Furthermore, it is possible to take linear combinations of single-defect as-

signments and form assignments with an arbitrary number of defects. One can
show that if these defects form an independent set on the triangular lattice,
then the corresponding spin-glass state is a local minimum of the Hamiltonian.
Therefore, the number of local minima scales as the number of independent
sets on the triangular lattice, which is O(κL2

), where κ ≈ 1.395 (hard hexagon

constant) [2].
Considering the energy barrier between local minima and the unique satisfy-

ing assignment, analytical results show that in order to escape a local minimum,
once has to introduce O(log2 L) additional defects. To summarise, this means
that there are a large number of local minima which all are at a large Hamming
distance from the satisfying assignment and which are separated by a large en-
ergy barrier from the satisfying assignment. These properties are responsible
for the glassiness of the spin-glass model and therefore for the hardness of the
resulting 3-SAT instances.

3 Conclusions

The problem of generating 3-SAT instances that have a previously known sat-
isfying truth assignment is important for the evaluation of solvers, in particular
incomplete solvers. Generating instances purely at random and disregarding
the unsatisfiable ones is typically not feasible for practical reasons, i.e. it would
in general lead to an exponential running time of the algorithm for constructing
problem instances.

Considering the hardness of instances that are generated by various schemes,

1Curiously enough, this number does not match the number of ones in Fig. 4; there seems

to be a factor of 3 missing.
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one can observe that not all “random” generation schemes result in hard for-
mulas. In fact, although the 3-SAT is NP-complete and hard instances exist
in general, there are important subclasses of formulas, such as the XOR-SAT

formulas, that are solvable in polynomial time. These formulas still pose a chal-
lenge for solvers. One of the models that are discussed in this seminar paper
considers this interesting subclass.

The parameterised generation of instances can reveal interesting aspects of
problem structure. One of the two spin-glass models that was discussed in
this seminar paper employs a parametrised random generation of clauses which
shows such a shift in complexity for the resulting input instances.
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