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1 Introduction

Auctions are a central part of trade in many societies. In an auction, the
seller, or the auctioneer, gives a number of people or organizations the option
to buy an item or items currently in the auctioneer’s possession. In a tradi-
tional auction, the auctioneer allows the bidders to express how much they
are willing to pay for each item. The bidder who is willing to pay the highest
price for the item wins the item. This is essentially how almost all auctions
today work. In the future, traditional auctions may be, in part, replaced by
combinatorial auctions (CAs).

Combinatorial auctions only make sense if the auctioneer has many items
for sale. The essential difference to the traditional auction model is that
the bidders are allowed to bid on packages, or combinations, of items. Each
bidder can express his willingness to buy different packages of items and the
acceptable price for each package. In the general case, the packages of items
can be complex combinations of items and mutual dependencies expressed
by logical connectives such as AND, OR, and XOR. In real-world auctions,
the bundling of items has been restricted to keep the auction feasible for
the auctioneer as well as the bidders. Based on the submitted bids, the
auctioneer decides which bidder gets which package or packages they bidded
for. The prices are fixed by the bids.

Single-item single-bid auctions do not allow bidders to express their valua-
tion of different combinations of the auctioned items. The bidders preferences
regarding packages of items can be complex. CAs are particularly suited for
auctioning a set of items that includes complements. Items are complements
if a set of items has higher value than the sum of values of the individual
items. For instance, a pair of shoes has higher value, or utility, than two
times the value of a single shoe. Allowing the bidders to fully express their
preferences often leads to higher overall economic efficiency, i.e., the items
are allocated to those who value them most. Also, auctioneer revenues are
larger. [1]

2 Examples of Use

2.1 Airspace Resources

The country-wide air transport system is a massively complex system in large
countries, such as the USA. A suitable auction is a good candidate system
for the efficient and economical allocation of the scarce airport resources
at given times. The use of a CA for the allocation has been proposed and
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studied, but not yet implemented. CAs might work well here since competing
airlines have different valuations for different packages of landing and takeoff
slots, for example. In the US, the regulator Federal Aviation Administration
is considering and evaluating CAs for allocating resources for LaGuardia
airport in New York.

2.2 Truckload Transportation

Combinatorial auctions are being used to buy and sell freight transporta-
tion services. In this case, the auctioneer is the shipper, the one who wants
goods transported, and the bidders are the carriers of the goods. The auction
is a reverse combinatorial auction: The bidders report the minimum prices
for which they will take on a specific package transportation contract, and
the auctioneer tries to minimize the total cost of all contracts. On average,
the following figures are observed in the auctions. There are 120 bidders of
which 64 are assigned business in the auction. The total reduction in trans-
portation costs is 6%, and the duration of the entire procurement process
3 months. The truckload transportation industry has benefitted from using
CAs as more accurate and comprehensive interaction and more collaboration
between shippers (auctioneers) and carriers (bidders). [1]

2.3 Bus Routes

Another reverse auction is the market of London bus routes. The market
includes about 800 routes and 3.5 million passengers per day. The London
Regional Transport (LRT) is the authority auctioning the routes to individual
bus companies. LRT has used some form of CA for the bus route allocation
since the mid-1980s. The service contracts are usually for five years. They
are so called ’gross cost’ contracts, where the winning bidder’s compensation
is the amount it bid, and all passenger-generated revenues go directly to
LRT. The use of CAs for this purpose has been a success. There may still
be room for improvement, since the parameter space of the design of the
auction is huge and the full evaluation of each combination of options is very
laborous. [1]

2.4 Industrial Procurement

Industrial procurement is potentially one of the largest application domains
for CAs. Here, the auction is again a reverse auction. In the business-to-
business domain, software vendors and procurement managers already show
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interest on CAs. A number of applications have been reported. Unfor-
tunately, public documentation and analysis of this application is rare—
possibly due to efforts to protect trade secrets. At Mars Inc., for instance,
the use of CAs in procurement has lead to increased suppliers’ margins and
cost savings to Mars. The payback time of Mars’ investment into the CA
system was less than a year. The auctions carried out have never taken more
time than the corresponding bilateral traditional negatiations. [1]

3 Winner Determination Problem

In combinatorial auctions, the problem that is of most interest to computer
science is the winner determination problem (WDP). This is simply the task
that the auctioneer performs after receiving all bids: The auctioneer has to
decide which bids win and which lose.

If the auctioneer is a private company, maximal revenue (or in the case of
a reverse auction minimal total cost) may be the goal. A public organization
may wish to maximize the number of satisfied bidders, i.e., allocate the goods
in such a way that a maximal number of bidders have at least one winning
or realized bid. Revenue maximization may be a secondary goal. The WDP
is an NP-complete optimization problem.

4 Statistical Mechanics Model

T. Galla et al. [2] have employed a statistical physics approach to the WDP.
In their model, there are N bidders and M items to be auctioned. Not all
items need to be sold. Each bidder i submits a single bid. A bid is defined
to be a set of items Ai for which the bidder is willing to pay a price of νi. A
more complex CA where bidders submit lists of bids nested by logical ORs
or XORs can be reduced to the one-bidder-one-bid model. This may require
enlargening the item and bidder sets. The following assumes that there is
exactly one bid per bidder. Variables xi are defined to describe the allocation
of items. Variable xi is 1 if the bid of bidder i wins, and 0 if it loses.

The winner determination problem is now formulated as follows: Find a
configuration x = (x1, ..., xN) ∈ {0, 1}N which maximizes the auctioneer’s
revenue R, or alternatively the number of satisfied bidders Ns, or maximize
both, in either of the two possible orders. Every bid cannot always be satis-
fied, because each item can only be sold once, and the item sets in the bids
can overlap. That is, since any pair of bids can be wholly or partially on the
same items, maximizing R or Ns is computationally hard.
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5 Greedy Winner Determination

Before further discussing the statistical mechanics approach, let us mention
two different methods for solving the WDP in this and the next section.
Let there be a given combinatorial auction where bidders can submit non-
overlapping bids connected by logical ORs. In this case, the following greedy
algorithm approximately solves the WDP in a polynomial number of steps
in M and the number of bids, l, for any given auctioneer’s parameter value
c [1].

The algorithm: Given an integer c and a set of bids {(Aj, νj)}l
j=1:

• Let Pc be the set of possible allocations of items to the bidders where
at most c bids win.

• Let xP be the optimal allocation within Pc.

• Let Bc be the subset of bids (Aj, νj) such that |Aj| ≤
√

M/c.

• Compute a greedy allocation xB with respect to bids in B by sequen-
tially selecting highest price bids that do not overlap with already se-
lected bids.

• Choose the better of the allocations xP and xB.

6 Simulated Annealing

Simulated annealing is a general-purpose algorithm for approximate solving
of optimization problems. Applied to the combinatorial auction WDP, simu-
lated annealing starts with a random configuration x indicating the winning
bids. To increase R or Ns, the algorithm randomly switches the state of
the bids. Changes in x increasing R or Ns are always allowed, and those
decreasing them are allowed with a probability controlled by a global tem-
perature. As the temperature is lowered, the system settles down in a state of
local optimum which, in general, often yields results at least nearly globally
optimal. [3]

7 Factor Graph and Conflict Graph

A combinatorial auction can be codified into a factor graph, an example of
which is shown in Fig. 1. The factor graph shows the item sets and bidders
of all bids. The bidders are represented as circles and the items as squares.
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There is an edge between a bidder and an item, if the bidder’s bid includes
the item.

The conflict graph (CG) describes which bids contain same items. An
example of a CG is shown on the right. A CG contains only bids (or in this
case bidders, since each bidder submits only one bid). This CG is for the
same auction as the FG on the left. We see that there is an edge connecting
two bids, if they bid for at least one common item.

Figure 1: Example of a factor graph (left) and the corresponding conflict
graph (right) of a combinatorial auction. (From Ref. [2])

8 Similarity to the Vertex Cover Problem

The problem of allocating the items according to the competing bids is closely
related to the vertex cover problem. Finding an allocation that respects the
constraint that no item be sold more than once is equivalent to finding a
vertex cover for the conflict graph. A covered bid loses and a non-covered
bid wins. When a connected vertex is covered in the conflict graph, at least
one conflict is removed.

The winner determination problem then becomes a weighted vertex cover
problem: Find such a vertex cover for the conflict graph that the auctioneer’s
revenue is maximized. The different vertices are weighted according to the
prices in the bids. If one is only interested in maximizing the number of
satisfied bidders, one can look for a minimum vertex cover for the conflict
graph. The minimum vertex cover contains the minimum number of nodes
that solves the problem, thus the number of losing bids is minimized, and
that of the winning bids is maximized.
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9 Cavity Approach

In Ref. [2], a cavity approach is used to solve the winner determination
problem. This approach is suitable for really solving the problem for a given
instance of a combinatorial auction. In the algorithm, cavity biases ua→i

and cavity fields hi→a are associated with the links of the factor graph. This
algorithm can also be applied to the conflict graph, with some modifications.
The cavity bias ua→i measures the likelihood that item a has already been
assigned to someone else than bidder i. The cavity field hi→a then measures
the likelihood that bidder i would win if his bid did not contain item a.
From this one can construct self-consistent equations for solving the biases
and the fields, for details see Ref. [2]. The equations are essentially belief
propagation.

10 Determining the Winners

Determining the winning bids is done as follows. The self-consistent belief
propagation equations are solved by iteration. However, the equations may
not converge, which poses a problem for the method. If convergence occurs,
it results in local fields Hi. In the case where the auctioneer seeks maximal
revenue, the field Hi equals the difference between the price in the bid and
the price at which bidder i would win. Thus, if the field is positive for i,
the bid of bidder i bid wins in all optimal solutions. If the field is negative,
bidder i has not bidded enough and bid i loses. If the field is exactly zero,
bidder i wins in some optimal assignments and loses in others.

Once the field Hi is known, one can fix the bids with the highest field
value as winning, and then start the belief propagation equations solving
procedure over for the reduced problem that contains only the bids that
were not assigned to win. Based on this iteration the field Hi is again used
to extract winner bids, and so on. By this procedure, the WDP is solved in
N log N steps if a finite fraction of winning bids is assigned in each iteration.

11 Typical Behaviour of the WDP

To obtain estimates of the combinatorial auctions’ typical behaviour, one
averages the self-consistent equations for the biases ua→i and the fields hi→a

over random ensembles. This leads to self-consistent equations for histograms
of the biases and fields which are then solved. The bidders are assumed to
select each item independently with probability z/M . Thus the average
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number of items wanted by a bidder is z. The following sections discuss two
different pricing behaviours.

11.1 Constant Prices

In the first case, the price for any set of items is constant. That is, all bidders
that bid for at least one item, offer the same price, 1. Thus νi = 1 for all
non-empty bids. Bids for zero items have νi = 0.

Let us first discuss the inset of Fig. 2. In the solid, dashed, and dotted
line, M/N is 0.5, 1, and 1.5, respectively. The lines were obtained by the
averaging of the belief propagation equations. The markers are simulated-
annealing results of optimal revenue estimates for single auction instances.
As one can see, the markers agree well with the belief propagation results.
Note that the revenue per item is maximal for an intermediate z. At small z,
many items are not part of any bid, and the revenue stays small. At large z,
the bids start to develop more and more conflicts, which decreases the total
revenue.

Figure 2: Phase diagram for constant-price combinatorial auctions. In the
lower region, replica symmetry (RS) holds, and in the upper region the
symmetry is broken. Inset: Maximal auctioneer’s revenue per item for
M/N = 0.5, 1, 1.5, from top to bottom. (From Ref. [2])

The larger figure is a phase diagram. The line marks a transition be-
tween two phases: Below the line, replica symmetry holds, whereas above
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the line, the larger number of conflicts between bids induces replica symme-
try breaking (RSB). The onset of RSB is belived to coincide with the onset
of computational hardness in this problem. In the RSB phase, the auction
solutions are clustered into disconnected sets. Inside the clusters, the solu-
tion configurations are connected by a number of steps that stays finite or
grows slower than the system size even if the system size goes to infinity.
Between the clusters, on the other hand, the configurations are connected by
paths with a thermodynamically extensive number of steps.

In the lower region, all maximum-revenue configurations belong to a sin-
gle cluster, i.e., are near each other in the configuration space. Methods
relying on replica symmetry are believed to give exact results for the max-
imal auctioneer’s revenue. However, solution methods valid in the replica
symmetric phase cannot be trusted in the replica symmetry broken phase.
Replica symmetry breaking usually corresponds to non-convergence of the
belief propagation equations. This is confirmed for the combinatorial auc-
tion model by the symbols in Fig. 2, which mark the points where belief
propagation stops to converge.

11.2 Linear Prices

In the second case, the price of each bid is proportional to the number of
items in the bid, i.e., the price per item is constant. This probably resembles
a real auction more than the constant-price behaviour. The number of items
is fixed the same as the number of bidders. For linear prices, selling every
item would be optimal for the auctioneer.

Results for linear prices are shown in Fig. 3. The increasing lines show the
auctioneer’s revenue per item, and the decreasing lines the number of satisfied
bidders, Ns. Different line styles correspond to different optimization goals
and preferences, see the legend for explanation. The vertical lines and the
symbols mark the point of replica-symmetry breakdown. For large z, the
results are approximate.

The revenue curves increase with z for small z, as for constant prices.
Frustration increases with z and replica symmetry is eventually broken. The
increasing frustration can be seen in the curves for the number of satisfied
bidders. As z increases, it eventually reaches M , and all items can be sold
to one of the bidders, at which point R/M is maximal.

We see that the revenue R/M decreases substantially if we optimize only
for the number of satisfied bidders. Optimizing for revenue after this some-
what increases revenue. The second optimization, of course, has no effect on
Ns. Changing the order of maximization has a smaller effect on Ns than on
the revenue. It makes very little difference if the additional optimization of
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Figure 3: Auctioneer’s revenue per item (increasing lines) and number of sat-
isfied bidders (decreasing lines) for different optimization preferences. Ver-
tical lines mark the point of replica-symmetry breakdown. (From Ref. [2],
legend added)

Ns is performed after optimizing revenue or not.

12 Summary

Combinatorial auctions have been used and will be used as the means to
efficiently buy or sell a large number of products or service contracts. In case
studies, benefits from using a combinatorial auction have been observed for
both the auctioneer and the bidders. Deciding which bids should win and
which should lose is a computationally hard problem. This is due to two
facts: Many bids can bid for same items, and each item can only be sold at
most once. The auctioneer usually wants to maximize revenue (or minimize
costs) or maximize the number of satisfied bidders.

T. Galla et al. have shown, using a statistical mechanics model, that there
is a phase boundary between computationally easy and hard regimes which
corresponds to replica symmetry breaking. In the future, an interesting topic
for research would be to see how survey propagation algorithms perform on
the combinatorial auction WDP.
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