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3.8 Clustering

Usually: min. VCs not distributed uniformly in conifg space.

Clusters := (sloppy definition) groups of min. VCs that are separated by regions
where no min. VCs exist.

"configuration space"

Possible: Hierarchy of clustering
Important question: clustering related to computational hardness?

Physics: infinite hierarchy observed for spin glasses (SK model, defined on a com-
plete, i.e., fully connected graph)

Analytically: corresponds to replica-symmetry breaking (RSB)

Ising ferromagnet: no clustering

Most models: no analytical clustering possible.

— study clustering using numerical methods. Here: VC

3.8.1 Neighbor-based clustering

Given: set of configurations {¢*} (¢ =11if i € VC «, 0 else)

Hamming distance

itamming (¢, ¢%) =Y |ef = ]| (1)

¢, ® “neighors” < dyamming(€*; %) < dmax. (example: VC (dipax = 2)).
Cluster: transitive closure of neighbour relation.
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Example: Clusters for VC

d=4

d=4 d=2 d=2

— two clusters

Algorithm: grow clusters by adding neighbors, O(#VCs?)
Assumption: Set S of all VCs available

begin
i = 0 {number of so far detected clusters}
while S not empty do
begin
t=1+1
remove an element ¢ from S
set cluster K; = {c®}
set pointer p to first element of K;
while p <> NULL do
begin
for all elements ¢ of S
if dpam(p, Q(’Y)) < dpax then
begin
remove ¢ from S
put ¢ at the end of K;
end
set pointer p to next element of K;
or to NULL if there is no more
end
end
end

Result:
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c < e: ONE cluster, independent of N
c > e: several clusters, logarithmic growth in NV

corresponds to onset of RSB in analytical solution

Note: large systems: too many solutions
— generate sample using parallel tempering
then use “ballistic search” for clustering (see W. Barthel and A.K. Hartmann,

“Clustering analysis of the ground-state structure of the vertex-cover problem”,
Phys. Rev. E 70, 066120 (2004)).

or use:

3.8.2 Hierarchical clustering

Aim: represent cluster structure as tree.
Input:

e Sample set of “items”, e.g. configurations {c¢*} sampled in equilibrium, or

min. VCs.
e Distances d(c®, c”)
Initially:

e Each item — one cluster

K, = {c*} with size n, =1
e Set of clusters S := {K,}

e Cluster distances (“proximiy matrix”)

Algorithm (“agglomerative clustering”)
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algorithm
begin
while there is more than one cluster do
begin
Select two clusters K, K3 with the minimal distance
Merge Clusters K, := K, U Kjp
for all other clusters Ks do
update d, 5 = ...
end
end

Tree representation (“dendrogram”):
e Single items = leaves
e Merge of clusters = two subtrees (daughters) meet in mother node

e Length of edge of node to mother = distance of its two daughters when
merged

Order of leaves (not unique) — ordering of items
— Proximity matrix: grey shaded drawn with rows/colums in that order
— cluster structure becomes visible.

Example: General idea

; _
L7

Different choices for update function possible
Here: Ward’s method

_ (na 4 ng)das + (ng + ns)dss — (n5)da s
dy s = (2)
No + ng + ng
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Example: 4 configuration from Sec. 3.8.1
S = {K17K27K37K4}7 ny = 17”2 = 17”3 = 17”4 =1

0 4 6 8
4 0 2 4
(o) =16 2 0 2
8 4 2 0
Iteration 1: Kg/ = Kg U Kg, Nor = 2
14+1)4+(141)6—1-2
d2'1:(+);:£111) 21—38:6
dyy = L0210 _ 3 333
0 6 8
= (dy5)=1|6 0 10/3
8 10/3 0

Iteration 2: Ky = Ko U Ky, ny = 3
dyy — (2+1D)6+(1+1)8-110/3 _ 102/3-10/3 _ 92 _ 23

2+1+1 4 12 3

© (d)— (230/3 230/3)

Iteration 3: Ky = K1 U Ky, nyr =4

Results for vertex cover:

(small ©): no structure (“paramagnet”)
c<e: solution cluster has no structure
c > e: hierarchy of solution clusters

any ¢ (small p)

c=1 (large p)




