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Missing appointments

3.3 Numerical Results

Ensemble G(N, ¢/N) of random graphs:

N vertices, each poss. N(N — 1)/2 edge is present with prob. ¢/N.
— ¢ = average degree

Here: ¢ = 2.0.
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Phase Transition

Figure 1: Probability P..(x) that a VC exists for a random graph
(c = 2) as a function of the fraction x of covered vertices.

Three different system sizes N = 25,50, 100 (averaged over 103 —10*
random graphs).

Left: average energy density e(x).

Inset: result for the energy in the region 0.3 < x < 0.5.
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Running time
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Figure 2: Time complexity of the vertex-cover algorithm = median
number of nodes visited in the configuration. N = 20, 25, 30, 35, 40,
¢ = 2.0. Right part (x > 0.4): Running times grows linearly. In-
set: logarithmic scale (also N = 45,50) — time complexity grows
exponentially with V.
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Finit-Size Scaling

Determine x.(N) for different graph sizes N
fit to the data a function

T(N) =2 +aN"" (1)

(frequently found behavior in physical systems)

Matches well:
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Figure 3: Finite-size scaling behavior of the critical cover size. The location of
the transition point z.(N) as a function of graph size N for different average
degree c. Inset: scaling of the correlation volume as a function of x for different
sizes. Error bars are, at most, of the order of the symbol size.

b does not depend much on the connectivity c:
b(c =2) =0.91(9), b(3) = 0.88(4), b(4) = 0.82(4), b(6) = 0.92(11)
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Phase diagram
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Figure 4: Phase diagram. Circles: numerical simulations. Line: ana-
lytical result. Bounds: dashed/dashed-dotted lines. Vertical line at
c=e~2.718.



Phase Transitions in Optimzation Problems, A.K. Hartmann 6

Analytical Result:

2W (c) + W (c)?
2¢ ’

W (c): Lambert-W function: W(c)exp(W(c)) = c.

Result exact until ¢ = e &~ 2.718: Assumption of Replica symmetry (RS) (<

simple organisation of phase space) is true.

¢ > e: Replica symmetry breaking (RSB) ( «» complex phase space) — cannot

be calculated exactly here.

ze(c)=1—

(2)

energy energy
RS RSB

config config

Note: percolation at c.;; = 1.0 < e !

3.4 Leaf-Removal algorithm

Speed up for finding minimum-size VCs (optimization problem 2)

Basic idea: only full VCs wanted

— all edges must be covered

— all edges {i,l} to leaves | (degree 1) must be covered
— either ¢ or [ must be covered

— no harm in covering 7, i.e. neigbours of leaves.

— all edges incident to ¢ are covered

— maybe more leaves generated

algorithm leaf-removal (G = (V| E))
begin
Initialize V' = ()
while there are leaves i (i. e.vertices with degree d; = 1) do
begin
Let j be the neighbor of a leaf ¢
cover j,i.e., V' =V'U{j}
Remove all edges adjacent to j from E
Remove ¢ and j from V/
end
return (V')
end
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Running time: O(M) (= O(N) for random graphs with fixed ¢)
Remaining graph: called core

Each component of core: treated with brand-and-bound algorithm.

Example: Leaf removal

Figure 5: Example of the leaf-removal algorithm. Upper left: initial
graph, vertices 1 and 2 are leaves. Upper right: graph after the first
iteration, vertex 5 has been covered (shown in bold) and the incident
edges removed (shown with dashed line style). Bottom: graph after
second and third iteration.

Previous sample graph
Two leaves, vertices 1 and 2

Iteration 1: say vertex 5 (neighbor of 2) is covered. (edges {2,5} and
{5,8} are covered and removed)

It. 2: v. 3 covered (neighbor of 1) (— edges {1,3} and {3,6})

— new leaf (vertex 6)

It. 3: v. 7 covered (neighbor of 6)
— just one egde left (i.e. two leaves 4,8)

It. 4: v. 8 covered
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— min. VC found! O

Note: for random graphs, connectivities ¢ < e: core is not extensive

— core = collections of components of O(log N) (Bauer and Golinelli, Europ.
Phys. J. B 24, 339 (2001))

— per component: running time of brand-and-bound algorithm exponential in
log N, i.e. polyonmial in N

— min VC can be found typically in O(N*) for ¢ < e.

3.5 Monte Carlo (MC) simulations

General simulation approach used in (statistical) physics.
See books:

e M. E. J. Newman und G. T. Barkema, Monte Carlo Methods in Statistical Physics
(Clarendon Press, Oxford, 1999).

e D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics,
(Cambridge University Press, Cambridge 2000).

Works very well for VC on random graphs, even for large c.

Basic idea: interpret VCs as configuration of physical system, a hard-core lattice gas,
MC introduces a dynamics into the system. Idea: dynamic is guided to lead into
minimum VCs.

3.5.1 The hard-core lattice gas

Arbitrary covers Vi on graph G = (V, E) including those larger than the mini-
mum VC:
— at least at one end-point of any edge there is a covering mark

Define uncovered vertices as occupied by particles.

— not allowed: particles at both endpoints of an edge |particles have chemical radius of one =
a hard-core repulsion




