2 Graphs

2.1 Basic Definitions

- (undirected) graph $G = (V, E)$: vertices $i \in V$ and undirected edges $\{i, j\} \in E \subseteq V^{(2)}$. Note $\{i, j\} = \{j, i\}$
- order $N = |V|$.
- size $M = |E|$.
- $i, j \in V$ are adjacent / neighboring if $\{i, j\} \in E$.
- $\{i, j\}$ is incident to i and j.
- degree $\text{deg}(i)$ of i = number of adjacent vertices. i is isolated if $\text{d}(i) = 0$.
- path $E' = \{\{i_0, i_1\}, \{i_1, i_2\}, \ldots , \{i_{l-1}, i_l\}\} \subseteq E$, length $l = |E'|$. E' goes from i_0 to i_l and vice versa (end points).
- i, j connected: \exists path from i to j.
- Connected component $V' \subseteq V$: all $i, j \in V'$ are connected.
- Matching $M \subseteq E$ such that no two edges in M are incident to the same vertex.

Example: Graphs/ Matching

Graph $G = (V, E)$ with $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{\{1, 4\}, \{1, 5\}, \{2, 5\}, \{2, 6\}, \{3, 4\}\}$.
Order $|V| = 6$, size $|E| = 5$.
Degrees, e.g. $d(1) = 2$, $d(3) = 1$.
\[E' = \{\{5, 1\}, \{1, 4\}, \{4, 3\}\} \text{: path from 5 to 3 of length 3.} \]

Left: matching \(M = \{\{1, 4\}, \{2, 5\}\} \).

Right: maximum-cardinality matching \(M = \{\{1, 5\}, \{2, 6\}, \{3, 4\}\} \).
\[\square \]

- A graph \(G' = (V', E') \) is a subgraph of \(G \) if \(V' \subset V, \ E' \subset E \).
- complement graph \(G^C = (V, E^C) \): \(E^C = V^2 \setminus E = \{\{i, j\} \mid \{i, j\} \notin E\} \).

When edges have orientation:
- A directed graph \(G = (V, E) \): \((i, j) \subset V \times V \): ordered pairs of vertices.
- directed path from \(i_0 \) to \(i_l \): \(E' = \{(i_0, i_1), (i_1, i_2), \ldots, (i_{l-1}, i_l)\} \subset E \)
- strongly connected component \(V' \): \(\forall i, j \in V' \), \(\exists \) a directed path from \(i \) to \(j \) and a directed path from \(j \) to \(i \).

2.2 Vertex-covers

- vertex cover (VC): Subset \(V_{vc} \subset V \) such that for each edge \(e = \{i, j\} \in E \)
 \(i \in V_{vc} \) or \(j \in V_{vc} \).
- \(V' \subset V \) arbitrary: elements \(i \in V' \) are called covered, also edges \(\{i, j\} \) with \(i \in V' \) or \(j \in V' \). Else uncovered.
- If all edges are covered, \(G \) also called covered.
- minimum vertex cover = vertex cover \(V_{vc} \) of minimum cardinality \(|V_{vc}| \).
- independent set of \(G \): \(I \subset V \) such that \(\forall i, j \in I \): \(\exists \) no edge \(\{i, j\} \in E \)
- clique of \(G \): \(Q \subset V \) such that \(\forall i, j \in Q \): \(\exists \{i, j\} \in E \).

Example: Vertex cover

Left: \(1 \) and \(2 \) covered (\(V' = \{1, 2\}\)), \(3, 4, 5, 6 \) uncovered. \(\rightarrow \{1, 3\}, \{1, 4\}, \{2, 3\} \) covered, \(\{3, 4\}, \{3, 5\}, \{4, 6\}, \{5, 6\} \) uncovered. \(\rightarrow G \) not covered.

Right: \(4 \) and \(5 \) also covered. \(\rightarrow \{3, 4\}, \{3, 5\}, \{4, 6\}, \{5, 6\} \) now covered as well. \(\rightarrow G \) is covered by \(V_{vc} = \{1, 2, 4, 5\} \).
\(I = \{3, 6\} \) is an independent set.
\[\square \]

Without proof: **Theorem:** For \(G = (V, E) \), \(V' \subset V \) the following three are equivalent.
(A) V' is a vertex cover of G.

(B) $V \setminus V'$ is an independent set of G.

(C) $V \setminus V'$ is a clique of the complement graph G^C.

Def.:

- vertex-cover decision problem asks whether, there are VCs V_{vc} of fixed given cardinality $X = |V_{vc}|$ $(x := X/N)$.

- cost function

$$H(V') = |\{(i, j) \in E \mid i, j \notin V'\}|,$$ \hspace{1cm} (1)

- constraint ground-state energy (optimization problem 1)

$$E(G, x) = Ne(G, x) = \min\{H(V') \mid V' \subset V, \ |V'| = xN\}$$ \hspace{1cm} (2)

- optimization problem 2: look for the minimum vertex cover, i.e. for a VC of minimum size

$$X_c(G) := N x_c(G) = \min\{|V'| \mid H(V') = 0\}.$$ \hspace{1cm} (3)

3 Algorithms for Vertex Cover

3.1 Heuristic algorithms

Find approximation of the true minimum VC.

1. Algorithm: Basic idea: cover as many edges as possible by using as few vertices as necessary.

algorithm greedy-cover($G = (V, E)$)

begin
	normalize $V_{vc} = \emptyset$;

while there are uncovered edges (i.e., $E \neq \emptyset$) do

begin

take one vertex i of highest current degree d_i;

mark i as covered: $V_{vc} = V_{vc} \cup \{i\}$;

remove from E all edges $\{i, j\}$ incident to i;
Example:

Here it fails (shown is exact min. VC):

Empirically: cardinality differs usually only by a few percent from the exact minimum.

But: Greedy heuristic allows not for bound on the size of V_{vc} compared to true minimum VC available.