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2 Graphs

2.1 Basic Definitions

e (undirected) graph G = (V, E): vertices i € V and undirected edges {i,j} €
E c V®. Note {i,j} = {j,i}

order N = |V| .

size M = |E|.

i,7 € V are adjacent / neighboring if {i,j} € FE.

{i,j} is incident to i and j.

degree deg(i) of i = number of adjacent vertices. ¢ is isolated if d(i) = 0.

path E' = {{io, i1}, {i1,i2},..., {ii_1,0}} C E, length | = |E’'|. E’ goes
from ig to i; and vice versa (end points).

e ¢, 7 connected: 3 path from 7 to j.

Connected component V' C V: all 4, j € V' are connected.

Matching M C FE such that no two edges in M are incident to the same
vertex.

Example: Graphs/ Matching
O S

Graph G = (V, E) with V' = {1,2,3,4,5,6} and E = {{1,4}, {1,5}, {2,5}, {2,6}, {3,4}}.
Order |V| = 6, size |E| = 5.
Degrees, e.g. d(1) =2, d(3) = 1.
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E' = {{5,1}, {1,4}, {4,3}}: path from 5 to 3 of length 3.
Left: matching M = {{1,4},{2,5}}.

Right: maximum-cardinality matching M = {{1,5},{2,6},{3,4}}.
UJ

A graph G’ = (V' E’) is a subgraph of G if V' C V, E' C E.

complement graph G¢ = (V, E): E€ =V@\ E = {{i,j} | {i,j} ¢ E}.

When edges have orientation:

2.2

A directed graph G = (V, E): (i,5) C V x V: ordered pairs of vertices.

directed path from iy to i;: E' = {(ig,41),(41,%2), .. .,(41_1,4)} C E

strongly connected component V': Vi, 7 € V', 3 a directed path from i to j
and a directed path from j to 7.

Vertex-covers

vertex cover (VC): Subset V,. C V such that for each edge e = {i,j} € E
1€ Vyeorj € V.

V' C V arbitrary: elements i € V' are called covered, also edges {7, j} with
i€ V'orje V' Else uncovered.

If all egdes are covered, GG also called covered.

minimum vertex cover = vertex cover V. of minimum cardinality |V,.|.

independent set of G: I C V such that Vi,7 € I: 3 no edge {i,j} € F

clique of G: @ C V such that Vi,j € Q 3 {i,j} € E.

Example: Vertex cover

Left: 1 and 2 covered (V' = {1,2}), 3,4,5,6 uncovered. — {1, 3},
{1,4},{2,3} covered,{3,4}, {3,5}, {4,6}, {5,6} uncovered. — G not
covered.

Right: 4 and 5 also covered. — {3,4}, {3,5}, {4,6},{5,6} now
covered as well. — G is covered by V. = {1,2,4,5}.

I ={3,6} is an independent set. 0

Without proof: Theorem: For G = (V,E), V' C V the following three are
equivalent.
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(A) V' is a vertex cover of G.

(B) V\ V' is an independent set of G.

(C) V\ V" is a clique of the complement graph G€.
Det.:

e vertex-cover decision problem asks whether, there are VCs V.. of fixed given
cardinality X = |Vi| (z := X/N).

e cost function

HV) =R{i.jye Elij ¢V}, (1)

e constraint ground-state energy (optimization problem 1)

E(G,z) = Ne(G,z) =min{ H(V") | V' C V, |V'| =N} (2)

e optimization problem 2: look for the minimum vertex cover, i.e. for a VC
of minimum size

Xe(G) = Nae(G) = min{|V'| | H(V') = 0} (3)

3 Algorithms for Vertex Cover

3.1 Heuristic algorithms

Find approximation of the true minimum VC.
1. Algorithm: Basic idea: cover as many edges as possible by using as few vertices
as necessary.

algorithm greedy-cover(G = (V, E)
begin
initialize Vi, = 0;
while there are uncovered edges (i.e., F # () do
begin
take one vertex ¢ of highest current degree d;;
mark i as covered: V. = Ve U{i};
remove from £ all edges {7, j} incident to i;
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end;
return(Vi.);
end

Example:

Here it fails (shown is exact min. VC):

O

Empirically: cardinality differs usually only by a few percent from the exact min-
imum.

But: Greedy heuristic allows not for bound on the size of V,,. compared to true
minimum VC available.



