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2 Graphs

2.1 Basic Definitions

• (undirected) graph G = (V,E): vertices i ∈ V and undirected edges {i, j} ∈

E ⊂ V (2). Note {i, j} = {j, i}

• order N = |V | .

• size M = |E|.

• i, j ∈ V are adjacent / neighboring if {i, j} ∈ E.

• {i, j} is incident to i and j.

• degree deg(i) of i = number of adjacent vertices. i is isolated if d(i) = 0.

• path E ′ = {{i0, i1}, {i1, i2}, . . . , {il−1, il}} ⊂ E, length l = |E ′|. E ′ goes
from i0 to il and vice versa (end points).

• i, j connected: ∃ path from i to j.

• Connected component V ′ ⊂ V : all i, j ∈ V ′ are connected.

• Matching M ⊂ E such that no two edges in M are incident to the same
vertex.

Example: Graphs/ Matching
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Graph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and E = {{1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 4}}.

Order |V | = 6, size |E| = 5.

Degrees, e.g. d(1) = 2, d(3) = 1.
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E ′ = {{5, 1}, {1, 4}, {4, 3}}: path from 5 to 3 of length 3.

Left: matching M = {{1, 4}, {2, 5}}.

Right: maximum-cardinality matching M = {{1, 5}, {2, 6}, {3, 4}}.
�

• A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊂ V, E ′ ⊂ E.

• complement graph GC = (V,EC): EC = V (2) \ E = {{i, j} | {i, j} /∈ E}.

When edges have orientation:

• A directed graph G = (V,E): (i, j) ⊂ V × V : ordered pairs of vertices.

• directed path from i0 to il: E ′ = {(i0, i1),(i1, i2), . . . ,(il−1, il)} ⊂ E

• strongly connected component V ′: ∀i, j ∈ V ′, ∃ a directed path from i to j
and a directed path from j to i.

2.2 Vertex-covers

• vertex cover (VC): Subset Vvc ⊂ V such that for each edge e = {i, j} ∈ E
i ∈ Vvc or j ∈ Vvc.

• V ′ ⊂ V arbitrary: elements i ∈ V ′ are called covered, also edges {i, j} with
i ∈ V ′ or j ∈ V ′. Else uncovered.

• If all egdes are covered, G also called covered.

• minimum vertex cover = vertex cover Vvc of minimum cardinality |Vvc|.

• independent set of G: I ⊂ V such that ∀ i, j ∈ I: ∃ no edge {i, j} ∈ E

• clique of G: Q ⊂ V such that ∀ i, j ∈ Q ∃ {i, j} ∈ E.

Example: Vertex cover

Left: 1 and 2 covered (V ′ = {1, 2}), 3, 4, 5, 6 uncovered. → {1, 3},
{1, 4}, {2, 3} covered,{3, 4}, {3, 5}, {4, 6}, {5, 6} uncovered. → G not
covered.

Right: 4 and 5 also covered. → {3, 4}, {3, 5}, {4, 6}, {5, 6} now
covered as well. → G is covered by Vvc = {1, 2, 4, 5}.
I = {3, 6} is an independent set. �

Without proof: Theorem: For G = (V,E), V ′ ⊂ V the following three are
equivalent.
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(A) V ′ is a vertex cover of G.

(B) V \ V ′ is an independent set of G.

(C) V \ V ′ is a clique of the complement graph GC.

Def.:

• vertex-cover decision problem asks whether, there are VCs Vvc of fixed given
cardinality X = |Vvc| (x := X/N).

• cost function
H(V ′) = |{{i, j} ∈ E | i, j /∈ V ′}| , (1)

• constraint ground-state energy (optimization problem 1)

E(G, x) = Ne(G, x) = min{H(V ′) | V ′ ⊂ V, |V ′| = xN} (2)

• optimization problem 2: look for the minimum vertex cover, i. e. for a VC
of minimum size

Xc(G) := Nxc(G) = min{|V ′| | H(V ′) = 0} . (3)

3 Algorithms for Vertex Cover

3.1 Heuristic algorithms

Find approximation of the true minimum VC.
1. Algorithm: Basic idea: cover as many edges as possible by using as few vertices
as necessary.

algorithm greedy-cover(G = (V,E)
begin

initialize Vvc = ∅;
while there are uncovered edges (i. e., E 6= ∅) do
begin

take one vertex i of highest current degree di;
mark i as covered: Vvc = Vvc ∪ {i};
remove from E all edges {i, j} incident to i;
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end;
return(Vvc);

end

Example:
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Here it fails (shown is exact min. VC):

Empirically: cardinality differs usually only by a few percent from the exact min-
imum.

But: Greedy heuristic allows not for bound on the size of Vvc compared to true
minimum VC available.


