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Lecture 1, 11. September 2007

1 Introduction

1.1 Technicalities

Survey: 5 CS students, 5 Physics students

Rules for credits:
Presentation (about 30-60 minutes using beamer) + written Summary (5-10
pages, best latex)
“Workshop” on Friday 12 October Test presentations on request (highly recom-
mended, otherwise risk of no credit !!)
alternative: programming project (only 1 or 2, on request)
next lecture: Wed 12, 12-14
no lectures: 2nd week

tutorials: Fri 10-12 (from third week on)

• discussion/question hours

• special subjects on request (introduction to computational complexity, sta-
tistical physics, replica calculation, . . . )

• presentations (12 October)

1.2 Examples

What is optimization:
In school: find maximum/minimum of function.

In Reality: many variables, often discrete: σ = (σ1, . . . , σn) ∈ Xn, (e.g. X =
{0, 1}, X = Z), H(σ)= cost function.
minimization problem

Find σ ∈ Xn, which minimizes H!

max H = −min(−H)
constraints: decrease number of feasible solutions.

In economics: save resources/money/time etc.

Aim: Measure running time as a function of “input size”.
Reminder: Definition: O notation Let T, g be functions from N → R We
write T (n) ∈ O(g(n)) :⇔ ∃c > 0 with T (n) ≤ cg(n) ∀. We say: T (n) is of order
at most g(n).
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Worst-case running time: Twc(n) = maxall instances I withsize n T (I) (traditional CS)
Typical running time: Esemble of instances I of size n: average T ∗(n) := 〈T (I)〉n
or (better) median.

Example: Traveling Salesman Problem (TSP)

n cities distributed in a plane.
Find the shortest round-tour through all cities, each city only once.

X = {1, 2, . . . , n} (1)

H(σ) =
n

∑

i=1

d(σi, σi+1) (2)

d(σα, σβ) : distance between cities; σn+1 ≡ σ1. �

Figure 1: 15 cities in a plane.
Algorithms: worst-case running time increases exponentially with n

In physics: ground state of magnetic systems, protein folding, data analysis, flux
lines in superconductors

Example: Ising Spin Glasses

Ising spin σi = ±1, simple lattice, nearest neighbor interactions (fer-
romagnetic/antiferromagnetic).

X = {−1, 1} (3)

H(σ) = −
∑

<i,j>

Jijσiσj (4)

bonds Jij = ±1. For each system: bonds fixed (quenched disorder)
→ Average over many samples.
Ground state=minimum of energy.
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Figure 2: Two-dimensional spin glass. Solid lines = ferromagnetic interactions,
jagged lines = antiferromagnetic interactions, small arrows = spins in ground
state, crosses = unsatisfied interactions.

In 2d: fast algorithms, in 3d only slow algorithms. �

1.3 Why studying combinatorial optimizations using physics

Many practical optimization problems, also in physics
Optimum cost function ↔ minimum energy ↔ ground state (T = 0)
What makes a problem hard, related to glassiness?
Phase transitions ↔ easy/hard changes
Transformations to physical systems → methods from stat. mech.
Fast algorithms wanted: e.g. simulated annealing (old), survey propagation (new)
Analysis of algorithms.

Example: Phase transitions in the TSP

Plane area A = Lx × Ly

Euclidean distances: d(i, j) =
√

(xi − xj)2 + (yi − yj)2

For each instance:

Is the shortest round trip through all cities shorter than a

given length l?

Solve exactly using branch-and-bound algorithm (see later)

Result: probability p of tour length < l as function of rescaled length
Φ = l/

√
nA 1. l scales with lengthscale of system, for

constant n, i.e.
√

A. 2. l scales like A for
constant density n/A. (Argument seems
not work for d > 2, according analytic
arguments.)
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→ Drastical change at Φ = Φ⋆ ≈ 0.78 phase transition

rescaling: p as fct of r = (Φ − Φ⋆)n2/3

→ data collaps (one curve)!

Running time: (mesured in terms of assigning city positions → ma-
chine independent)

Instances close to phase transition: hardest to solve!

Problem easy to solve for small/large values of l (i.e. Φ):

• Small l, even the two closest cities have a distance > l → algo-
rithm terminates

• Large l, even random permutation has total distance < l.

�
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1.5 Subjects of Seminar

(details: see http://www.tcs.hut.fi/Studies/T-79.7003/)

• Phase transition in the Number-Partitioning Problem

• Modern Walk-SAT algorithms

• Calculation of phase boundary for vertex-cover problem (analytical) [pre-
sented by: Joni Parjinen]

• Calculation of typical running time of a branch-and-bound algorithm for
the vertex-cover problem (analytical)

• Calculation of typical running times of WalkSAT algorithms (analytical)

• Generating hard but solvable SAT formulas (bit analytical)

• Phase transitions in generalized SAT problems

• Phase transition in minimizing spin-glass energies

• Vertex-cover on other graph ensmbles (bit analytical)

• Phase transition in ground states of random-field systems and running time
of maximum-flow algorithms



Phase Transitions in Optimzation Problems, A.K. Hartmann 6

• Combinatorial auctions [presented by: Olli Ahonen]

• Uniform sampling of local minima in Ising spin glasses [presented by: Petri
Savola]


