Hardness of Approximation

Olli Pottonen
olli.pottonen@tkk.fi

April 28, 2008
Reductions and gaps

• Gap-introducing and gap-preserving reductions

• Gap-introducing reduction from SAT to minimization problem Π: $\phi \mapsto x$ and
 – if ϕ is satisfiable, $OPT(x) \leq f(x)$
 – if ϕ is not satisfiable, $OPT(x) > \alpha(|x|)f(x)$

• Gap-preserving reduction from minimization problem Π_1 to minimization problem Π_2: $x_1 \mapsto x_2$ and
 – $OPT(x_1) \leq f_1(x_1) \Rightarrow OPT(x_2) \leq f_2(x_2)$
 – $OPT(x_1) > \alpha(|x_1|)f_1(x_1) \Rightarrow OPT(x_2) > \beta(|x_2|)f_2(x_2)$
Probabilistically checkable proof (PCP)

- First step in gap-introducing reductions
- Recall the definition of NP: language L is in NP if there is a deterministic polynomial time verifier V such that
 - if $x \in L$, then there is a polynomial-sized proof that makes V accept
 - if $x \notin L$, then no proof makes V accept
PCP(f, g)

• Language L is in $PCP(f, g)$, if there is a probabilistic verifier V which takes $O(f)$ bits of randomness and inspects $O(g)$ bits of the proof such that

 – if $x \in L$, then there is a polynomial-sized proof that makes V accept with probability 1
 – if $x \notin L$, then no proof makes V accept with probability $\geq 1/2$
The PCP theorem

- $\text{PCP}(\log n, 1) = \text{NP}$

- $\text{PCP}(\log n, 1) \subseteq \text{NP}$, since all $2^{O(\log n)} = n^c$ possible computations can be checked in polynomial time

- The difficult part: $\text{NP} \subseteq \text{PCP}(\log n, 1)$. Proof omitted.
What does this have to do with approximation?

- **Maximize accept probability** Consider a $PCP(\log n, 1)$ verifier for SAT. For SAT formula ϕ, find the proof which maximizes acceptance probability.

- By the PCP theorem, no factor $1/2$ approximation algorithm unless $P = NP$.
Next goal: MAX-3SAT

• We wish to construct gap-introducing reduction from SAT to MAX-3SAT that transforms a Boolean formula ϕ to ψ with m clauses such that

 − ϕ satisfiable \Rightarrow $OPT(\psi) = m$, and
 − ϕ not satisfiable \Rightarrow $OPT(\psi) < (1 - \epsilon_M)m$

 for some constant $\epsilon_M > 0$.
MAX k-FUNCTION SAT

- **MAX k-FUNCTION SAT** Given n Boolean functions on m variables such that each functions takes a constant number k of arguments, maximize the number of satisfied functions.

- For some constant k there is a gap-introducing reduction from SAT to MAX k-function SAT that transforms a formula ϕ to an instance I with m functions such that
 - ϕ satisfiable \Rightarrow $OPT(I) = m$, and
 - ϕ not satisfiable \Rightarrow $OPT(I) < \frac{1}{2}m$.

- Proof: consider $PCP(\log n, 1)$ verifier and take one function for each possible computation.
MAX-3SAT

- Given MAX \(k \)-FUNCTION SAT instance I, transform each function to a 3SAT formula J. Assume we originally have \(n^c \) functions. The transform results in \(m \leq n^c 2^k(k-2) \) clauses. If \(\text{OPT}(I) = n^c \), then \(\text{OPT}(J) = m \), if \(\text{OPT}(I) < \frac{1}{2}n^c \), then \(\text{OPT}(J) \leq 1/2\epsilon n^c \) with \(\epsilon = 1/(2^k(k-2)) \).
Clique

• For some positive ϵ, there is no $1/n^\epsilon$ factor approximation algorithm unless $P = NP$.

• First let us proof that there is no factor $1/2$ approximation algorithm:

• For constants b, Q, there is a gap-introducing reduction from SAT to clique which transforms a formula ϕ of size n to a graph G' with $|V| = Qn^b$ such that

 – if ϕ is satisfiable, then $OPT(G') \geq n^b$
 – if ϕ is not satisfiable, then $OPT(G') < \frac{1}{2}n^b$
Reduction from SAT to clique

- Consider \(PCP(\log n, 1) \) verifier for F SAT. It requires \(b \log n \) bits of randomness and \(q \) bits of proof. For each possible computation of \(F \), construct a vertex \(u_{r,\tau} \), where \(r \) and \(\tau \) are the random bits and proof bits read by F, respectively. There are \(2^{qn^b} = Qn^b \) vertices. Vertices are adjacent if they are accepting and have non-contradicting proof bits. If there is a clique of size \(k \), there is at least one proof consistent with the clique. The proof is accepted with probability at least \(k/(Qn^b) \).
Towards better reduction

- If the verifier accepts false proof with probability $< 1/2$, then the same reduction would have gap size $1/n^e$ instead of $1/2$.

- $PCP_{c,s}(f,g)$: correct proof accepted with probability c, false with probability s. We would like to have $s = 1/n$ instead of $1/2$.

- Standard trick: repeat computation $O(\log n)$ times to get error probability $1/n$.

- Problem: $O(\log n)$ runs with $O(\log n)$ random bits each time requires $O(\log^2 n)$ random bits. This is too much!
• Solution: first take random string \(r \) of length \(b \log n \), make small changes \(O(\log n) \) times, each change requiring \(O(1) \) bits of randomness. Now we get \(O(\log n) \) random strings.

• Random walk in an expander graph.

• Theorem: Assume constant degree expander graph \(H \) with \(n^b \) vertices. There is a constant \(k \) such that for any set \(S \) of vertices with size \(< n^b/2 \),
 \[
 Pr(\text{random walk of length } k \log n \text{ lies in } S) < 1/n.
 \]

• Thus: \(NP = PCP(\log n, 1) = PCP_{1,1/n}(\log n, \log n) \).