
Hardness of Approximation

Olli Pottonen
olli.pottonen@tkk.fi

April 28, 2008



Reductions and gaps

• Gap-introducing and gap-preserving reductions

• Gap-introducing reduction from SAT to minimization problem Π: φ 7→ x
and

– if φ is satisfiable, OPT (x) ≤ f(x)
– if φ is not satisfiable, OPT (x) > α(|x|)f(x)

• Gap-preserving reductiong from minimazition problem Π1 to minimization
problem Π2: x1 7→ x2 and

– OPT (x1) ≤ f1(x1) ⇒ OPT (x2) ≤ f2(x2)
– OPT (x1) > α(|x1|)f1(x1) ⇒ OPT (x2) > β(|x2|)f2(x2)

1



Probabilistically checkable proof (PCP)

• First step in gap-introducing reductions

• Recall the definition of NP: language L is in NP if there is a deterministic
polynomial time verifier V such that

– if x ∈ L, then there is a polynomial-sized proof that makes V accept
– if x 6∈ L, then no proof makes V accept

2



PCP(f, g)

• Language L is in PCP (f, g), if there is a probabilistic verifier V which
takes O(f) bits of randomness and inspects O(g) bits of the proof such
that

– if x ∈ L, then there is a polynomial-sized proof that makes V accept
with probability 1

– if x 6∈ L, then no proof makes V accept with probability ≥ 1/2

3



The PCP theorem

• PCP (log n, 1) = NP

• PCP (log n, 1) ⊆ NP , since all 2O(log n) = nc possible computations can
be checked in polynomial time

• The difficult part: NP ⊆ PCP (log n, 1). Proof omitted.

4



What does this have to do with approximation?

• Maximize accept probability Consider a PCP (log n, 1) verifier for
SAT. For SAT formula φ, find the proof which maximizes acceptance
probability.

• By the PCP theorem, no factor 1/2 approximation algorithm unless
P = NP .

5



Next goal: MAX-3SAT

• We wish to construct gap-introducing reduction from SAT to MAX-3SAT
that transforms a Boolean formula φ to ψ with m clauses such that

– φ satisfiable ⇒ OPT (ψ) = m, and
– φ not satisfiable ⇒ OPT (ψ) < (1− εM)m

for some constant εM > 0.

6



MAX k-FUNCTION SAT

• MAX k-FUNCTION SAT Given n Boolean functions on m variables
such that each functions takes a constant number k of arguments,
maximize the number of satisfied functions.

• For some constant k there is a gap-introducing reduction from SAT to
MAX k-function SAT that transforms a formula φ to an instance I with
m functions such that

– φ satisfiable ⇒ OPT (I) = m, and
– φ not satisfiable ⇒ OPT (I) < 1

2m.

• Proof: consider PCP (log n, 1) verifier and take one function for each
possible computation.

7



MAX-3SAT

• Given MAX k-FUNCTION SAT instance I, transform each function to a
3SAT formula J. Assume we originally have nc functions. The transform
results inm ≤ nc2k(k−2) clauses. If OPT (I) = nc, then OPT (J) = m,
if OPT (I) < 1

2n
c, ther OPT (J) ≤ 1/2εnc with ε = 1/(2k(k − 2)).

8



Clique

• For some positive ε, there is no 1/nε factor approximation algorithm
unless P = NP .

• First let us proof that there is no factor 1/2 approximation algorithm:

• For constants b, Q, there is a gap-introducing reduction from SAT
to clique which transforms a formula φ of size n to a graph G with
|V | = Qnb such that

– if φ is satisfiable, then OPT (G) ≥ nb

– if φ is not satisfiable, then OPT (G) < 1
2n

b

9



Reduction from SAT to clique

• Consider PCP (log n, 1) verifier for F SAT. It requires b log n bits of
randomness and q bits of proof. For each possible computation of F ,
construct a vertex vr,τ , where r and τ are the random bits and proof
bits read by F, respectively. There are 2qnb = Qnb vertices. Vertices are
adjacent if they are accepting and have non-contradicting proof bits. If
there is a clique of size k, there is at least one proof consistent with the
clique. The proof is accepted with probability at least k/(Qnb).

10



Towards better reduction

• If the verifier accepts false proof with probability < 1/, then the same
reduction would have gap size 1/nε instead of 1/2.

• PCPc,s(f, g): correct proof accepted with probability c, false with
probability s. We would like to have s = 1/n instead of 1/2.

• Standard trick: repeat computation O(log n) times to get error
probability 1/n.

• Problem: O(log n) runs with O(log n) random bits each time requires
O(log2 n) random bits. This is too much!

11



• Solution: first take random string r of length b log n, make small changes
O(log n) times, each change requiring O(1) bits of randomness. Now we
get O(log n) random strings.

• Random walk in an expander graph.

• Theorem: Assume constant degree expander graph H with nb vertices.
There is a constant k such that for any set S of vertices with size < nb/2,
Pr(random walk of length k log n lies in S) < 1/n.

• Thus: NP = PCP (log n, 1) = PCP1,1/n(log n, log n).

12


