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The Steiner Network Problem

1. The Steiner Network Problem

» Also known as the Survivable Network Design Problem

» Given:
» Undirected graph G = (V, E) with nonnegative edge costs
c:E—-QT
» Terminal connectivity requirementr : (\é) — 77t
> Goal:

» Find minimum-cost subgraph of G that contains at least r (u,v)
edge-disjoint paths between each pair of terminals {u,v}.

» Extension:

» Each edge e € E can have multiplicity ue € Z* U {o0}

» General goal is to find a minimum-cost multigraph on V that
satisfies the connectivity requirement. Each copy of edge e
induces cost c(e).
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The Steiner Network Problem

Linear programming formulation

» Each S C V has associated cut requirement:
f(S) = max{r(u,v) |ueS,ves}
» Recall notation for boundary of cut S:
d(S)={{u,v} €E|uesS,veS}

» Steiner network LP:

m|negEcexe

s.t. Xe > f(S), SCV
ele€d(S)
Xe €{0,1,...,Uc}, e €EE,Ue £ ©
e € Z", e €E,ug =00
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LP relaxation

» Relaxed program:

min CeXe

s.t. Z Xe > f(S), SCV
ee€d(S)
Ue > Xe >0, e €E, U #
Xe > 0, ecE,ue =0

> Note that program has exponentially many constraints, so cannot
be solved in polynomial time in any obvious way.

» However, also a polynomial-sized LP can be developed.

» Alternately, a method such as the ellipsoid algorithm based on
the notion of a polynomial-time separation oracle can be used.
This is a subroutine that, given point x, either validates that x is a
feasible solution or produces a violated constraint.
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The Steiner Network Problem

2. The Half-Integrality Property

» Our aim is to develop a 2-approximation algorithm for the Steiner
Network Problem.

» This is easy for problems that have the half-integrality property: in
any extremal feasible solution to the fractional LP, each variable
Xe has value of the formm-(1/2), m > 0. (Thus in the case of
binary variables, xe € {0,1/2,1}.)

» Extremal solution = not a convex combination of others.

» If the half-integrality property holds, one simply rounds up all the
Xe in the fractional optimum. This at most doubles the total cost.
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The Steiner Network Problem

Half-integrality of Vertex Cover

» Consider e.g. the Vertex Cover Problem on a graph G = (V,E),
with vertex weights ¢, € Q.

» Fractional LP formulation:

min CuXy
St Xy +xy > 1, {u,v} €E
Xy 2 07 vev
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The Steiner Network Problem

Lemma 1. Let x be a feasible solution to the fractional Vertex Cover
LP that is not half-integral. Then x is a convex combination of two
(other) feasible solutions to the LP.

Proof. Partition the set of vertices that are not half-integral in x:

1
V+:{V E<X\/<l}7 V:{V

Then forany € > 0, x = %(y + z) for solutions y, z defined as follows:

1
0<x\,<—}.
2

Xy +€, Xy €Vy Xy —& Xy €EVy
Ww=1. Xy—E& Xy €V_ Zy =4 Xy+E& Xy €V_
Xy s otherwise Xy, otherwise

It can be verified that for small enough € > 0, solutions y, z # x are feasible
for the fractional Vertex Cover LP. (The only nontrivial condition occurs when
Xu + %y = 1. But then the definition of V., V_ ensures that also

Yu+W =2,+2z,=1forany € >0.)
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Half-integrality of Steiner Networks

» Unfortunately, the Steiner Network Problem does not have the
half-integrality property.

» Counterexample: the Petersen graph with connectivity
requirement 1 between each pair of vertices.

» This has fractional optimal cost 5, achieved e.g. by solution with
extent 1/3 of each edge. Any half-integral solution of cost 5 would
have to pick two edges with extent 1/2 incident to each vertex,
resulting in a Hamiltonian cycle of the graph. But the Petersen
graph is nonhamiltonian.
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An extremal solution on the Petersen graph

» Consider the following extremal optimum on the Petersen graph:

T

Solid edges are picked to extent 1/2 and dotted edges to extent
1/4, for a total cost of 5.

» Note that although the solution is not half-integral, some edges
are included to extent 1/2.

» This is in fact a general property of all extremal solutions to the
Steiner Network Problem, and can be used to derive an iterated
rounding algorithm for it, with approximation ratio 2.
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The Steiner Network Problem

3. Approximation by Iterated Rounding

» A requirement function f defined on the cuts of a graph
G = (V,E) is weakly supermodular if f (V) = 0 and for any two
cuts A,B C V at least one of the following holds:
1. f(ANB)+f(AUB) >f(A)+f(B)
2. f(A\B)+f(B\A) >f(A)+f(B)
» E.g. the original Steiner Network requirement function is weakly
supermodular.

» Theorem 2. For any weakly supermodular requirement function
f, any extremal feasible solution to the fractional Steiner Network
LP satisfies xe > 1/2 for at least one e € E.
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» This gives the first stage of the algorithm: find an extremal
solution to the fractional SNLP, choose all edges e with xe > 1/2,
round their contributions up and remove them from the network.
Then what?

» Given a set of (removed) edges H in a Steiner Network G, the
residual requirement for a cut S is

() = (S) — [8u(S)],

where &y (S) is the set of edges in H crossing S.

» Lemma 3. Let G be a Steiner network with requirement function
f, and H a subgraph (set of edges) in G. If f is weakly
supermodular, then so is fy.
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The iterated rounding algorithm

1. SetH =0, f' =f.
2. While f’ # 0 do:
» Find an extremal optimum x for the present fractional SNLP, with
cut requirements .
» For each edge e with xe > 1/2, include [xe | copies of e in H, and
decrement ue by this number.
» Update f": forS CV, f/(S) =f(S) — [0u(S)|.

3. Output H.
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Remaining questions

» Proof of Theorem 27?
» Proof of Lemma 37?
» Finding extremal optima to fractional SNLP?

» Approximation guarantee 2 also for iterated rounding?
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Proof of Lemma 3

> A cut capacity function g on a graph G = (V,E) is strongly
submodular if g(V) = 0 and for any two cuts A,B C V both of the
following hold:
1. g(ANB)+g(AUB) <g(A)+g(B)
2. g(A\B)+g(B\A) <g(A)+g(B)
» Lemma 3'. For any graph H on vertex set V, the cut capacity
function |0y (S)] is strongly submodular.
Proof. By case analysis of Venn diagrams.

» Lemma 3. Let G be a Steiner network with requirement function
f, and H a subgraph (set of edges) in G. If f(S) is weakly
supermodular, then sois fy (S) = f(S) — |0u(S)|.

Proof. Straightforward from Lemma 3.
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Finding extremal optima to fractional SNLP

» By the ellipsoid method.
> Separation oracles are provided by max-flow techniques.
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Approximation guarantee for iterated rounding

» By induction.
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