
The Shortest Vector Problem (Lattice Reduction Algorithms) 

 

“Approximation Algorithms” by V. Vazirani, Chapter 27 
 

 

 

- Problem statement, general discussion 

 

- Lattices: brief introduction 

 

- The Gauss’ algorithm in R2 

 

- Lower bound via Gram-Schmidt orthogonalization 

 

- Gauss reduced basis, the lattice reduction algorithm 

 

- The dual lattice and approximate No certificates for the shortest vector problem 

 



The Shortest Vector Problem 

 

Given n linearly independent vectors in Qn: a1, …, an, find the shortest vector, in L2 norm, in the 

lattice generated by these vectors. Here  = { 1 a1 + … + n an | i  Z }. 

 

Remark 1. We’re in Rn, of course, but having rational coordinates is essential because we want 

to express efficiency of our algorithms in the length of input. 

 

Remark 2. We will consider only full rank lattices. Dealing with those that do not span the 

entire space is, in general, more involved. 

 

We will present an exponential in n factor approximation algorithm for this problem that runs in 

time polynomial in n and the input length.  This may not sound impressive, but finding a 

polynomial factor algorithm is a long-standing open problem. 

 

M. Ajtai [1997] showed that the shortest vector problem is NP-hard for randomized reductions. 

That is, there is a probabilistic Turing machine that in polynomial time reduces any problem in 

NP to instances of the shortest vector problem. Given an oracle solving the shortest vector 

problem (the input being a basis of the corresponding lattice), this machine solves in polynomial 

time any problem in NP with probability at least 1/2. Even a (very) good approximate solution to 

the shortest vector problem would be sufficient for solving (in the probabilistic sense again) any 

problem in NP.  



The lattice reduction algorithm has numerous applications in computational number theory and 

cryptography. In particular, even the weak approximation guarantee that we have is sufficient to 

break certain cryptographic primitives under certain circumstances. Thus, understanding the 

lattice reduction techniques and related attacks is important in the design of cryptographic 

primitives. 

 

Example. The problem of solving bivariate integer polynomial equations seems to be hard. 

Letting P(x, y) be a polynomial in two variables with integer coefficients, 

P(x, y) = i, j pij x
i yj  

it consists in finding all integer pairs (x0, y0) such that P(x0, y0) = 0. Obviously, integer 

factorization is a special case of this as one can take P(x, y) = N – x y. 

 

D. Coppersmith [1995] showed that using LLL, the problem of finding small roots of bivariate 

polynomial equations is easy: 

Theorem. Let P(x, y) be an irreducible polynomial over Z, of maximum degree δ in each 

variable separately. Let X and Y be upper bounds on the desired integer solution (x0, y0), and let 

W = maxi,j | pij | X
iYj . If XY < W 2/(3δ), then in time polynomial in (logW, 2δ), one can find all 

integer pairs (x0, y0) such that P(x0, y0) = 0, | x0|  X, and | y0|  Y . 

 

This can be used to factor in polynomial-time an RSA-modulus n = pq such that half of the least 

significant or most significant bits of p are known. 

 



Lattices: bases and determinants 

 

Given a lattice  basis a1, …, an, let A denote the n x n matrix whose rows are the basis vectors. 

If vectors b1, …, bn belong to  and B is the corresponding matrix, we can write B = A, where 

is an n x n integer matrix. Thus, det(B) is a multiple of det(A). 

 

A square matrix M with integer entries and such that | det(M)| = 1 is called unimodular. Its 

inverse is obviously also unimodular. 

 

Theorem. Let vectors b1, …, bn belong to . The following conditions are equivalent: 

 

1. b1, …, bn form a basis of   

2. | det(B)| = | det(A)| 

3. there is an n x n unimodular matrix U such that B = U A. 

 

Proof: 1 => 2 => 3 => 1. 

 

So, the determinant of a basis for  is invariant, up to sign. We’ll call | det(A)| the determinant of 

lattice  and denote it by det . 



Observation. We can move from basis to basis by applying unimodular transforms. 

 

Observation. The most desirable basis to obtain is an orthogonal basis, as its shortest vector is 

also the shortest vector of the lattice. However, not every lattice admits such a basis. 

 

Hadamard’s inequality: for any n x n real matrix A, | det(A)|  ||a1|| …||an||, and this holds with 

equality iff either one of the rows is the zero vector or the rows are mutually orthogonal. 

 

Applying it to any lattice basis b1, …, bn, we get  det ||b1|| …||bn||. 

 

We define the orthogonality defect of basis b1, …, bn to be   ||b1|| …||bn|| / det . 

Intuition: the smaller the orthogonality defect of a basis, the shorter its vectors must be. The 

ideal is reached for orthogonal bases. 

 

We say that linearly independent vectors b1, …, bk are primitive if they can be extended to a 

basis of . 

 

Theorem. Vector a   is primitive iff a is shortest in its direction.



The Gauss’ algorithm (shortest vector in R2) 

 

In R2 a weaker condition than orthogonality suffices for ensuring that a basis contains a shortest 

vector. Let denote the angle between the basis vectors b1, b2, 0 <  < 180. 

Thus, det  = ||b1|| ||b2|| sin . 

 

Theorem. If ||b1||  ||b2|| and 60    120, then b1 is a shortest vector in the lattice. 

 

Define  21 =  (b1, b2) / ||b1||
2. [Here, (b1, b2) is inner product of b1 and b2.] 

 

Note that 21 b1 is the component of b2 in the direction of b1. 

 

Proposition. If basis (b1, b2) satisfies ||b1||  ||b2|| and | 21| 1/2, then 60    120. 

 

The original algorithm by Gauss. 

 

While the conditions of the above Proposition are not meet, do 

    (a) If | 21| 1/2, let b2    b2 – m b1, where m is the integer closest to 21. 

    (b) If ||b1||  ||b2||, interchange b1 and b2. 

 

Output b1.



Although the algorithm clearly works, proving its efficiency is hard. The following careful 

modification, due to Kaib and Schnorr, makes it possible to prove a polynomial bound on the 

running time. 

 

We say that basis (b1, b2) is well ordered if  ||b1||  ||b1 – b2   ||b2||. 

If ||b1||  ||b2||, then one of the three bases (b1, b2), (b1, b1 – b2), and (b2 – b1, b2) is well ordered. 

 

The enhanced algorithm. 

 

Start with a well ordered basis. 

 

(a) If | 21| 1/2, let b2    b2 – m b1, where m is the integer closest to 21. 

(b) If (b1, b2) < 0, let b2    – b2. 

(c) If ||b1||  ||b2||, make a well ordered basis from b1, b2, b1 – b2, and go to step (a). 

     Otherwise, output b1 and halt. 

 

We can show that each iteration, after which we don’t terminate, reduces the length of the basis’ 

longest vector by a factor of at least  3 / 2 sqrt(2). That’s enough to show that the number of 

iterations is bounded by a polynomial in the input length.



Lower bounding the shortest vector length (OPT) via Gram-Schmidt orthogonalization 
 

Gram-Schmidt orthogonalization is a process of transforming a given basis b1, …, bn into 

orthogonal one  b1
*, …, bn

*, where b1
* = b1, and bi

* is the component of bi orthogonal to b1
*, …, 

bi-1
*. 

Here is what we do for i  2: 

 

bi
*  =  bi  –  i-1

j=1 [(bi, bj
*) / ||bj

*||2] bj
* 

 

Remark. The Gram-Schmidt orthogonalization depends not only on the basis chosen, but also 

on the order of the basis vectors. 

 

For 1   j  <  i   n, we define  ij  =  (bi, bj
*) / ||bj

*||2, and define  ii = 1. 

 

Then   bi  =  i
j=1 ij bj

*. 

 

Remark. Subspaces generated by b1, …, bk  and  b1
*, …, bk

* are the same for any k.



For  j i, we define  bi(j) to be the component of bi orthogonal to b1
*, …, bj-1

*  (and also, clearly, 

to b1, …, bj-1) , that is, 

 

bi(j) =  ij bj
* + i,j+1 bj+1

* + … + bi
* 

 

Obviously,  det   =  ||b1
*|| … ||bn

*||. 

 

 

Lemma. Let b1, …, bn be a basis for lattice , and b1
*, …, bn

* be the Gram-Schmidt 

orthogonalization for it. Then 

  

OPT   min {||b1
*||, …, ||bn

*||}. 

 

Proof: express a shortest vector v via b1, …, bn, and let k be the largest index, such that bk is in 

the expression, and then express via b1
*, …, bn

*… 



Gauss reduced bases, the Lattice Reduction Algorithm (LLL) 
 

The LLL algorithm (by Lenstra, Lenstra, and Lovasz) is based on two ideas: 

- the reduction technique of Gauss (the algorithm for R2); 

- ensuring that the lengths of the corresponding Gram-Schmidt basis’s vectors do not 

decrease too fast, thus, placing a lower bound on the length of shortest of them. 

 

We will say that basis b1, …, bn is Gauss reduced if for i < n 

||bi(i)||
2    4/3 ||bi+1(i)||

2  and 

| i+1,i|    1/2. 

 

The Lattice Reduction Algorithm (LLL). 

While basis b1, …, bn is not Gauss reduced, do 

    (a) For each  i < n, ensure that  | i+1,i|    1/2. 

         If | i+1,i|  >  1/2, then bi+1    bi+1 – m bi, where m is the integer closest to i+1,i. 

    (b) Pick any i such that  ||bi(i)||
2  >  4/3 ||bi+1(i)||

2, and interchange bi+1 and bi. 

 

Output b1. 



Theorem. The LLL algorithm terminates in a polynomial number of iterations (in n and the 

input length) and achieves an approximation guarantee of 2(n – 1)/2. 

 

Proof (sketch): 

Proving the approximation guarantee is straightforward. 

To upper bound the number of iterations: 

- Work with integer bases. 

- Introduce potential function    = n
i=1 ||bi

*||(n – i) . 

- Show that the initial value of  is upper bounded by a polynomial in the input length,  is 

always lower bounded by 1, and each execution of step (b) reduces the value of  by a factor of 

at least 2/sqrt(3). 

 

Now, strictly speaking, bounding the number of iterations is not exactly what we want. We 

actually want to bound the number of bit operations, that is, to show that the numbers being 

handled by the algorithm can be written using a polynomial number of bits. 



The stronger notion of a Lovasz reduced basis and appropriate extension of the LLL algorithm 

make it possible to prove a polynomial upper bound on the number of bit operations. 

 

We say that basis b1, …, bn is weakly reduced if for 1  j  i  n:  | i,j|    1/2. 

 

The basis is said to be Lovasz reduced if it is Gauss reduced and weakly reduced. 

 

It is possible to obtain a weakly reduced basis from a given basis, without changing its Gram-

Schmidt orthogonalization, using at most  n(n – 1)/2  arithmetic operations, and we simply need 

to use that procedure instead of step (a) of the original LLL algorithm.



The dual lattice and existential factor n approximate No certificates 
 

The dual lattice, *, is defined by * = {v  Rn | for any b , (b, v)  Z}. 

If B is the matrix of a basis b1, …, bn, then (B-1)T is the corresponding basis matrix for the dual 

lattice. 

 

There are techniques based on appropriate selecting of primitive vectors in dual lattices that 

allow constructing (though not efficient!) of bases for primal lattices with “good” Gram-Schmidt 

orthogonalizations. 

 

Theorem. There is a basis for  whose Gram-Schmidt lower bound is at least OPT/n. 

 

Thus, we have factor n approximate No certificates for the shortest vector problem. However, 

we do not know how to construct those efficiently. 

 

 


