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Steiner Forest problem 

 

Let G = (V, E) be an undirected graph with a cost function on the edges  c: E Q+ . 

 

Given a collection of disjoint subsets of V: S1, …, Sk , we are to find a minimum cost 

subgraph in which any pair of vertices from the same set Si is connected. 

[In general, such a subgraph may not exist at all if G is not connected.]  

 

Obviously, the solution is a forest. 

 

We will start with defining a connectivity requirement function r: V x V  {0, 1} 

 

                  1, if u and v belong to the same set Si 

r(u, v)  =  

                  0, otherwise 

 

To restate the problem as an integer program, we will consider cuts (S, Sc) in G and 

think of edges that should be chosen in their boundaries (S, Sc) to satisfy the 

connectivity requirements. 

[We may also use just S to refer to the cut (S, Sc).]



Let’s define a function on all cuts in G that “selects” the cuts in the boundaries of 

which we must choose at least one edge. 

 

                  1, if there exist u in S and v in Sc such that r(u, v) = 1 

f(S, Sc)  =  

                  0, otherwise 

 

Now, here’s the integer program for Steiner Forest: 

 

minimize     eE ce xe  

 

subject to     e(S)  xe    f(S, Sc),  for each cut (S, Sc) 

 

                     xe    {0, 1},              eE 

 

To get the LP-relaxation, we simply change the last set of conditions to 

 

                     xe    0,              eE 

 

Note that the conditions  xe    1  are clearly redundant. 



The number of constraints in our integer and linear programs is exponential. However, 

we’re not going to solve the linear program, we will use the primal-dual schema 

instead, so the exponential number of constraints is not a concern. 

 

This is in contrast with the approach to the Steiner Network problem that will be 

discussed in the next talk. Since we will use iterated LP-rounding there, we will have 

to deal with the large number of constraints issue. 

 

Let us now state the dual program: 

 

maximize     SV  f(S)  yS  

 

subject to     S:e(S)  yS    ce,  for each eE 

 

                     yS    0,              SV 

 



Applying the primal-dual schema 

 

Primal-dual schema: an integral solution to the primal program and a feasible solution 

to the dual program are constructed iteratively. 

  

Our algorithm will be guided by (a) the slackness conditions, with the dual solution 

optimality being the goal, and (b) by the primal program constraints, with the primal 

solution feasibility being the goal, in turn. 

 

So, we start with null primal and dual solutions and will, in turn, “raise” variables yS 

corresponding to appropriate cuts, and pick appropriate edges, setting their variables xe 

to 1. [Note that, surely, there is no point in raising variables of cuts with f(S, Sc) = 0.] 

 

Here are the slackness conditions for the dual solution: 

 

S:e(S)  yS  =  ce,  for each eE  with xe = 1.  (Every picked edge is “tight”.) 

 

The other set of the slackness conditions would require us to pick exactly one edge in 

the boundary of each cut (S, Sc) with yS > 0. That we cannot achieve, but we will be 

able to upper bound the number of edges selected in the boundaries on average. 



Now, the main questions are: 

- which cuts to raise in a given iteration? 

- which edge to pick in a given iteration? 

 

When we raise certain cuts, we must stop at the point when at least one edge in their 

boundaries becomes “tight”, that is, the slackness condition for that edge is satisfied. 

Naturally, we would then pick the newly-tight edge. 

 

Clearly, it makes sense to raise only “unsatisfied” cuts, since we do not want to pick 

edges in the boundaries of the already satisfied ones. But not all of them, as that would 

make it very hard to track the process. A natural choice then is to raise, in a given 

iteration, only such unsatisfied cuts (S, Sc) that either S or Sc is a minimal (w.r.t. 

inclusion) unsatisfied set. We will call such cuts (and respective minimal sets) 

“active”. 

 

It is easy to keep track of the currently active cuts and detect edges in their boundaries 

that get tight when variables yS for the active cuts are raised in a synchronized manner. 



The following characterization of active sets is a key ingredient in the algorithm 

design: 

 

Set S is active iff (S, Sc) is unsatisfied and S is a connected component in the currently 

picked subgraph. 

 

Since we always pick edges in the boundaries of the currently active sets, our picked 

subgraph is always a forest. Now, here is the algorithm: 

 

1. Initialize all the primal and dual programs’ variables to zeros. 

 

2. While (there exists an unsatisfied set) do 

          simultaneously raise yS for each active set S until some edge e goes tight 

    Select e by setting xe to 1. 

 

3. Remove all the unnecessary selected edges. 

 

- Some implementation details (tracking active sets, etc.). 

- Why we end up with feasible primal and dual solutions. 

- Why we can simultaneously remove all the unnecessary edges in step (3). 



Example 

 

 

 

 

 

 

 

 

 

 

The connectivity requirements: 

 

r(u, v) = 1,  r(s, t) = 1 
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The approximation guarantee 

 

We denote by F the forest obtained at the end of step 2, and by F’ – the final solution 

after step 3. Let degF’(S) denote the number of edges of F’ crossing the cut (S, Sc). 

 

Lemma 

Let C be any subset of V. If f(C) = 0, then  degF’(C)  1. 

In particular, this is true for the set of vertices of any connected component at any 

iteration of the algorithm (w.r.t. the currently picked edges). 

 

Theorem 

The algorithm achieves an approximation guarantee of factor 2. 

 

Proof 

Since the objective function of any feasible solution to the dual problem gives a lower 

bound for the primal problem optimum, it suffices to show 

 eE’ ce    2 SV  yS   ( = 2 SV  f(S)  yS) 

 

For the left-hand side, we notice that every picked edge is tight. Then, what we need is:  

SV  degF’(S)  yS    2 SV  yS  . 



We will show more: in each iteration of the algorithm, the left-hand side of the last 

inequality grows no more than its right-hand side. That is equivalent to proving the 

following bound: 

 

S active degF’(S)    2 (# of active sets) 

 

So, we want to upper bound the average degree of the active sets… 

 



Tight example is the one for the metric Steiner tree problem: 

Kn+1, S1 contains n vertices, edges in S1 of cost 2, the remaining edges of cost (1 + ). 

 

Integrality gap 

 

Claim 

 

The algorithm places an upper bound of 2 on the integrality gap of the LP-relaxation of 

the Steiner forest problem. 

 

That is, supI  OPT(I) / LP-OPT(I)    2. Why? 

 

Here is an example that places a lower bound of (essentially) 2 on the integrality gap in 

question: 

 

Given a cycle on n vertices, with all the edges of cost 1, we are to find the minimum 

spanning tree. The MST cost is obviously (n – 1). Our algorithm will find a dual of 

value n/2. There is also a fractional primal solution of the same value: take all the 

edges with the coefficient of 1/2. So, that must be LP-OPT for the given instance. 

 


