Key Management in Ad-Hoc Networks

Jukka Valkonen

Laboratory for Theoretical Computer Science Helsinki University of Technology

28.3.2007

Outline

- Key management approaches
- Authenticated key agreement methods
- Case: WLAN

Key Management Approaches

- Key predistribution
- Key transport
- Key arbitration
- Key agreement

Now let's take a closer look at these

Key Management Approaches (2)

- Key Predistribution
 - Key distributed to all aparties before communication
 - Static: Not possible to add devices
- Key Transport
 - One device generates a key, and transmits it to all receivers
 - The simplest scheme: Predistributed key is used to encrypt the session key. Also PKI is possible
 - Shamir's three-pass protocol (See next slide)

Shamir's three-pass protocol

- ① D_1 generates random key K and encrypts it using f with random key x and sends the value to D_2 $D_1 \rightarrow D_2 \colon f_x(K)$
- ② D_2 encrypts the received message using g and a random key y and sends the value to D_1 $D_1 \leftarrow D_2 \colon g_v(f_x(K))$

$$\mathsf{D}_1 o \mathsf{D}_2$$
: $f^{-1}(g_y(f_x(K))) = f_x^{-1}(f_x(g_y(K))) = g_y(K)$

1 D₂ decrypts the received value using g^{-1} and y.

Key Management Approaches (3)

- Key Arbitration
 - Central arbitrator creates and distributes the keys
 - For example AP
 - The arbitrator need to be accessible by all the devices all the time
- Key Agreement
 - For example Diffie-Hellman Key agreement protocol
 - A passive attacker does not get the key, active man-in-the-middle is a threat
 - Needs quite a lot of computational power

Recap: Diffie-Hellman Key Exchange

Another Classification

Key Management

- Authentication is crucial aspect
- Diffie-Hellman key negotiation is vulnerable to active man-in-the-middle attacks

Encrypted Key Exchange

- ① D_1 picks fresh random number a, and sends $(1, P(g^a \mod p))$ to D_2
- ② D₂ picks fresh random number b, computes the shared secret $K = g^{ab} \mod p$, and sends $(P(g^b \mod p), K(challenge_2))$ to D₁
- **3** D₁ computes the shared secret $K = g^{ab} \mod p$, and sends $K(challenge_1, challenge_2)$ to D₂
- \bigcirc D₂ verifies, that *challenge*₂ was echoed correctly and sends $K(challenge_1)$ to D₁.
- \odot D₁ verifies, that *challenge*₁ was echoed correctly

Encrypted Key Exchange for Groups

- **1** $D_i \to D_{i+1} : g^{R_1 R_2 \dots R_i} \mod p, i = 1, \dots, n-2$
- $② \mathsf{D}_{n-1} \to \mathsf{ALL} : \pi = g^{R_1 R_2 \dots R_{n-1}} \mathsf{mod} \ p$
- **3** $D_i \to D_n$: $P(c_i)$, i = 1, ..., n-1, where $c_i = \pi^{\frac{R_i}{R_i}}$ and \tilde{R}_i is a fresh random number generated by D_i
- \bullet $D_i \rightarrow ALL: D_i, K(D_i, H(D_1, D_2, ..., D_n))$ for some i

Numeric Comparison: MANA IV

- Devices authenticate public Diffie-Hellman keys
- The users are expected to compare verification strings

 - ① D_2 checks if $\hat{h} \stackrel{?}{=} h(\hat{R_1})$ If equality holds, D_2 computes $v_2 = f(P\hat{K}_1, PK_2, \hat{R}_1, R_2)$, otherwise it aborts . D_1 computes $v_1 = f(PK_1, P\hat{K}_2, R_1, \hat{R}_2)$.
 - **1** Both devices check if v_1 equals v_2 .

Threshold Cryptography

- Relies on trusted third parties
- t+1 out of n servers needed to sign a certificate (where $n \geq 3t+1$)
- Signing a certificate:
 - Each server generates a partial signature
 - The partial signatures are sent to a combiner
 - The combiners generates the signature out of t+1 partial signatures and verifies it
 - If verification fails, at least one partial signature was not valid
 - New set of t+1 partial signatures is tried

Multicast: WLAN

- Devices first negotiate upper layer keys (for example Simple Config)
- The upper layer keys are used on MAC-layer to negotiate keys
- A Group Temporal Key (GTK) is derived
 - Sender specific

Multicast: WLAN

Conclusions

- Key management is crucial aspect
- Multiple different ways to handle key negotiation
- Not enough to just negotiate key, but lower level protocols need to be taken into consideration also

Thank You!

Questions?