Security in Ad Hoc Networks Attacks

Nie Pin niepin(at)cc.hut.fi

T-79.5401 Special Course in Mobility Management: Ad hoc networks

Agenda

- Objectives of attacks
- Target selection
- Classifications of attacks
- Passive & Active
- Analysis of layers
- Detection and countermeasure
- Ideas and suggestions

Objectives of attacks

- Computer Network Attack
 - Operations to disrupt, deny, degrade, or destroy information resident in computers and computer networks, or themselves.
- Groups and features
 - Camouflage and pretending (invalid/illegal access)
 - impersonation, masquerading, spoofing
 - Stealing
 - Target at the content (information & data)
 - Eavesdropping, snooping, interception
 - Destroying
 - Target at the content (virus, fabricating/forging, replay stale msg)
 - Target at the resources (DoS, Worm, Overflow)

Target selection

- Traffic load analysis
 - Frequent appeared nodes (address)
 - Frequent appeared packets (protocol, type)
- Responses evaluation
 - Services available on the node (capability)
 - Status of the node (membership)
 - Topology of the network
- Distribution of functions
 - Importance of the functions (pro-studied)
 - Weakness of the functions (pre-studied)

Classifications of attacks

- Passive and Active
 - By operations
- MAC layer, Network Layer, Transport Layer, Application Layer
 - By carriers and underlying services
- Intentions
 - Disable functions (DoS, Overflow, Sleep deprivation)
 - Limited disturb (blackhole, byzantine, impersonating)
 - Invalid access (eavesdropping, hijack)

Passive & Active

Passive

- No altering to the data and network
- Hard to detect
- Information disclosure and followed by active attacks

Active

- Violation of the consistency or availability
- Perceptable but hard to track
- Malfunction of the services or the network
- Man-in-the-middle attack
 - Malicious intermediate node, on the relay path
 - Passive + Active

Analysis of layers

- MAC layer
 - Jamming, backoff attack (RTS/CTS handshake), interferences
- Network layer
 - Routing and resources (bandwidth, memory, battery)
- Transport layer
 - Session and data (content) interception
- Application layer
 - Repudiation, privacy, invalid access services

Detection and countermeasure

- Key management
 - Minimal requirement for secure communication
 - Threshold cryptography
- Watchdog (fault tolerance)
 - Persistent monitoring
- Periodic security refresh
 - Session timeout, node configuration, key pair (share) exchange
- Redundancy and non-repudiation
 - Multi-path routing (diversity coding)
 - Non-repudiation provides the evidence of intentions (signature)
- Intrusion Detection System
 - Tracing and sharing (P2P), collective determination, EWS
- Standardization
 - Standards-compliant, knowledge threshold

Secure Routing

- Routing table
 - Overflow, poisoning
 - Signature, roof limits
- Routing packets
 - Replication, flooding
 - Signature, sequence number, IDS
- Trust model
 - Friends, encounter, polling, knowledge-based
- Backup channels
 - Advantages of the redundancy
 - How to store and update backup routes

Ideas and suggestions

- Overheads of prevention should be low
 - Service-oriented, fast deployment and function is required
 - Lifetime of ad hoc applications used to be short
- Detection and responses of attacks should be quick and persistent
 - Attack-aware VS Security-aware (self-adjust)
 - Benefits of randomness (frequent changes)
- Knowledge based
 - Local database of the last encounter
 - Whitelist and blacklist (internal state tracking)
- Multi-configurations for different situations
 - "tolerable attacks"
 - Security-binding services (hidden security parameters)
- The resurrecting duckling model
 - Secure transient association of a device with multiple serialized owners

Resources

- Ad Hoc Wireless Networks: Architectures and Protocols,
 C. Siva Ram Murthy and B. S. Manoj
- Standardization Areas for Securing Ad hoc Networks, Rajesh Talpade and Anthony McAuley
- Secure Ad Hoc Networking, Panagiotis Papadimitratos
- Securing Ad Hoc Networks, Lidong Zhou and Zygmunt J. Haas
- The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks, Frank Stajano and Ross Anderson
- Security within Ad hoc Networks, Preetida Vinayakray-Jani
- Mobility Helps Security in Ad Hoc Networks, Srdjan Capkun, Jean-Pierre Hubaux, and Levente Buttyan

Questions

