Security in Ad Hoc Networks
Attacks

Nie Pin
niepin(at)cc.hut.fi

T-79.5401
Special Course in Mobility Management: Ad hoc networks
Agenda

• Objectives of attacks
• Target selection
• Classifications of attacks
• Passive & Active
• Analysis of layers
• Detection and countermeasure
• Ideas and suggestions
Objectives of attacks

• Computer Network Attack
 – Operations to disrupt, deny, degrade, or destroy information resident in computers and computer networks, or themselves.

• Groups and features
 – Camouflage and pretending (invalid/illegal access)
 • impersonation, masquerading, spoofing
 – Stealing
 • Target at the content (information & data)
 • Eavesdropping, snooping, interception
 – Destroying
 • Target at the content (virus, fabricating/forging, replay stale msg)
 • Target at the resources (DoS, Worm, Overflow)
Target selection

• Traffic load analysis
 – Frequent appeared nodes (address)
 – Frequent appeared packets (protocol, type)

• Responses evaluation
 – Services available on the node (capability)
 – Status of the node (membership)
 – Topology of the network

• Distribution of functions
 – Importance of the functions (pro-studied)
 – Weakness of the functions (pre-studied)
Classifications of attacks

- Passive and Active
 - By operations
- MAC layer, Network Layer, Transport Layer, Application Layer
 - By carriers and underlying services
- Intentions
 - Disable functions (DoS, Overflow, Sleep deprivation)
 - Limited disturb (blackhole, byzantine, impersonating)
 - Invalid access (eavesdropping, hijack)
Passive & Active

• Passive
 – No altering to the data and network
 – Hard to detect
 – Information disclosure and followed by active attacks

• Active
 – Violation of the consistency or availability
 – Perceptable but hard to track
 – Malfunction of the services or the network

• Man-in-the-middle attack
 – Malicious intermediate node, on the relay path
 – Passive + Active
Analysis of layers

• MAC layer
 – Jamming, backoff attack (RTS/CTS handshake), interferences

• Network layer
 – Routing and resources (bandwidth, memory, battery)

• Transport layer
 – Session and data (content) interception

• Application layer
 – Repudiation, privacy, invalid access services
Detection and countermeasure

- **Key management**
 - Minimal requirement for secure communication
 - Threshold cryptography
- **Watchdog (fault tolerance)**
 - Persistent monitoring
- **Periodic security refresh**
 - Session timeout, node configuration, key pair (share) exchange
- **Redundancy and non-repudiation**
 - Multi-path routing (diversity coding)
 - Non-repudiation provides the evidence of intentions (signature)
- **Intrusion Detection System**
 - Tracing and sharing (P2P), collective determination, EWS
- **Standardization**
 - Standards-compliant, knowledge threshold
Secure Routing

• Routing table
 – Overflow, poisoning
 – Signature, roof limits

• Routing packets
 – Replication, flooding
 – Signature, sequence number, IDS

• Trust model
 – Friends, encounter, polling, knowledge-based

• Backup channels
 – Advantages of the redundancy
 – How to store and update backup routes
Ideas and suggestions

• Overheads of prevention should be low
 – Service-oriented, fast deployment and function is required
 – Lifetime of ad hoc applications used to be short
• Detection and responses of attacks should be quick and persistent
 – Attack-aware VS Security-aware (self-adjust)
 – Benefits of randomness (frequent changes)
• Knowledge based
 – Local database of the last encounter
 – Whitelist and blacklist (internal state tracking)
• Multi-configurations for different situations
 – “tolerable attacks”
 – Security-binding services (hidden security parameters)
• The resurrecting duckling model
 – Secure transient association of a device with multiple serialized owners
Resources

- *Ad Hoc Wireless Networks: Architectures and Protocols*, C. Siva Ram Murthy and B. S. Manoj
- *Standardization Areas for Securing Ad hoc Networks*, Rajesh Talpade and Anthony McAuley
- *Secure Ad Hoc Networking*, Panagiotis Papadimitratos
- *Securing Ad Hoc Networks*, Lidong Zhou and Zygmunt J. Haas
- *Security within Ad hoc Networks*, Preetida Vinayakray-Jani
- *Mobility Helps Security in Ad Hoc Networks*, Srdjan Capkun, Jean-Pierre Hubaux, and Levente Buttyan
Questions

Interpolation tolerance (one fourth) ?

Attacks ranking? (situations)

Security-aware and Attacks-ware?

Categories of ad hoc applications?