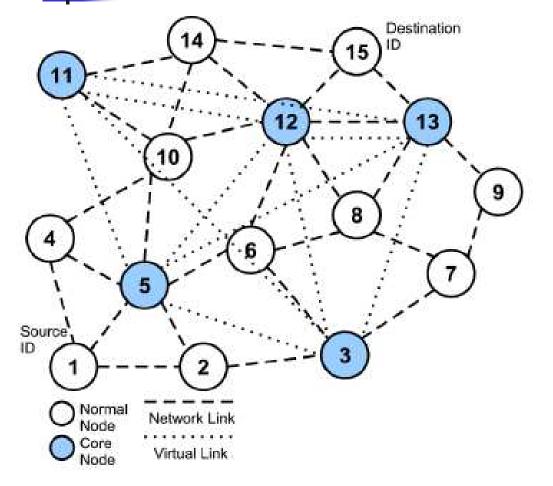
Hybrid Routing Protocols

Kilinkaridis Theofanis <u>tkilinka@cc.hut.fi</u>

T-79.5401 Special Course In Mobility Management


Hybrid Routing Protocols

- Core Extraction Distributed Ad Hoc Routing(CEDAR) protocol
- Zone Routing Protocol (ZRP)
- Zone-based Hierarchical Link State (ZHLS) Routing Protocol
- Routing Protocols with Efficient Flooding Mechanisms
 - Preferred link—based rooting(PLBR) protocols
 - Neighbor Degree-based Preferred Link Algorithm
 - Weight-based Preferred Link algorithm
 - Optimized link state routing(OSLR) protocol

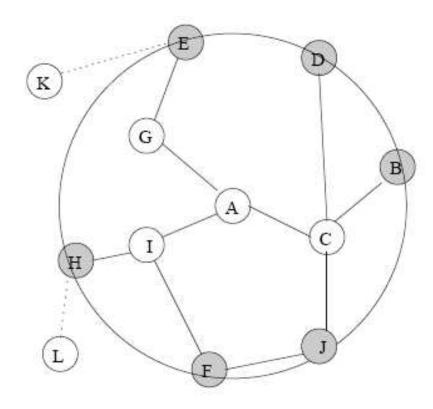
Core Extraction Distributed Ad Hoc Routing(CEDAR) protocol

- Route establishment uses reactive routing scheme and is performed by core nodes
- Basic concept: core extraction
 - there is at least on core node every three hops
 - every node picks up a node within a distance not greater than one hop from it, as its dominator
 - the core consists of the *dominators* and *tunnels*
 - tunnels consist of at most two intermediate non-core nodes
 - core nodes advertise their presence in the three-hop neighborhood

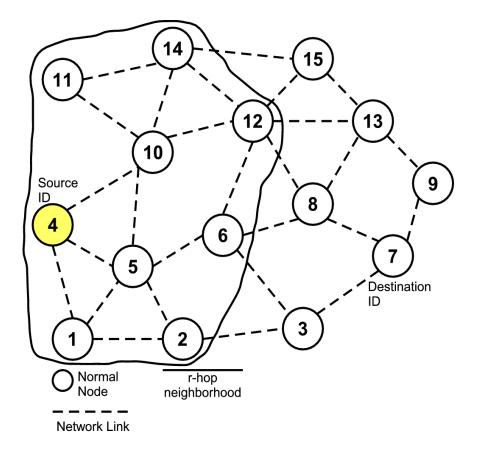
Core Extraction Distributed Ad Hoc Routing(CEDAR) protocol

Phase1:

- Finding core nodes
- Establishing virtual links


Phase2:

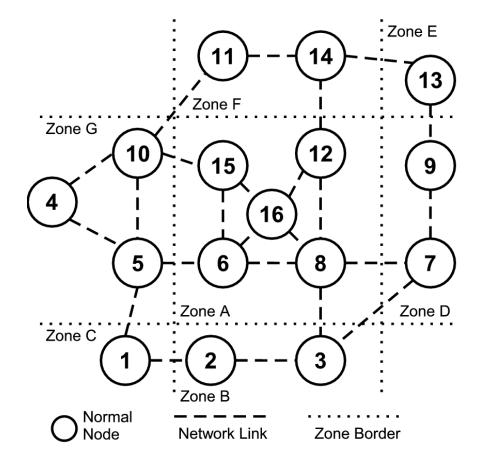
- Check local topology
- Initiate a RouteRequest
- Core broadcast
- RouteReply
- Core path


Core Extraction Distributed Ad Hoc Routing(CEDAR) protocol

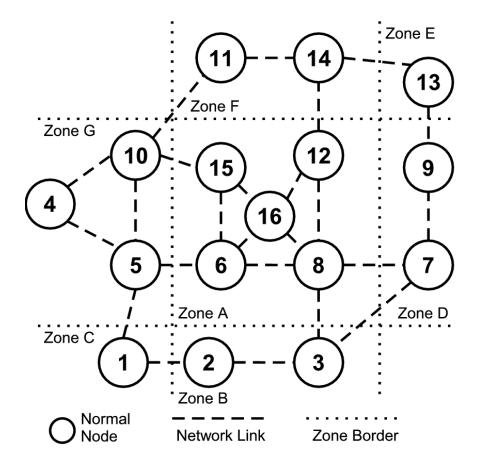
- Link break:
 - The node after which the break occurred
 - sends a notification of failure
 - begins to find a new path from it to the destination.
 - rejects every received packet till the moment it finds a new path to the destination.
 - Meanwhile, as the source receives the notification message
 - it stops to transmit
 - tries to find a new route to the destination.
 - If the new route is found by either of these two nodes, a new path from the source to the destination is established!
- Advantage:
 - utilization of core nodes \rightarrow reduces the traffic overhead
- Disadvantage:
 - the route establishment and computation is relied on core nodes
 - core nodes' movement affects the performance of the protocol

- Typical hybrid protocol:
 - combines proactive and reactive routing schemes.
- Divides the network to local "neighborhoods" <u>zones</u>
- Intra-zone routing protocol (IARP) is used in the zone – proactive routing scheme
- Inter-zone routing protocol (IERP) is used for communication between the zones – reactive routing scheme

- Each node may be in more then one zones
- Zones may be of a different size
- Zone radius r=2
- A's zone={B, C, D, E, F, G, H, I, J }
- Interior nodes={C, G, I }
- Peripheral nodes={B, D, E, F, H, J }
- Each node maintains the information about the routes to its zone nodes

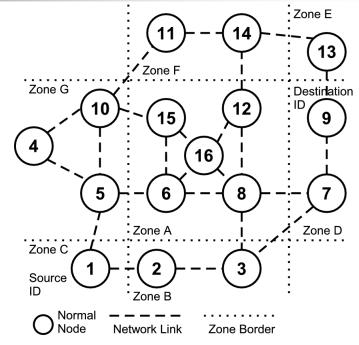


- Route establishment:
 - Check if the destination is within the zone
 - Bordercast RouteRequest
 - Check if the destination is within the zone
 - RouteReply
 - Source node chooses the best path


Link break:

- The intermediate node that detects a broken link in the path
 - chooses another alternative path to bypass the broken link local path reconfiguration!
 - path update message is sent to the sender to inform it about the link failure.
- Advantage:
 - it reduces the control traffic produced by periodic flooding of routing information packets(proactive scheme)
 - it reduces the wastage of bandwidth and control overhead compared to reactive schemes
- Disadvantage:
 - the large overlapping of routing zones

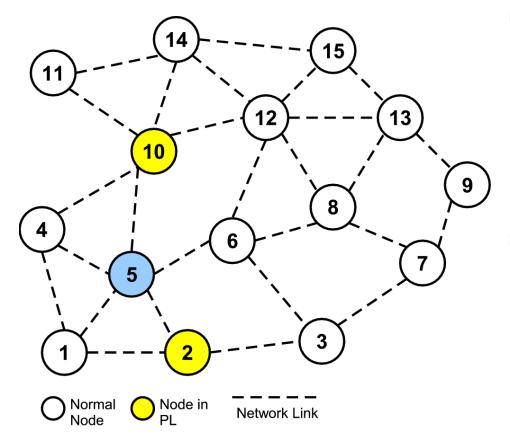
- Hybrid protocol based on node ID and zone ID approach
- Each node knows only the node connectivity within its zone and the zone connectivity of the whole network
- No cluster heads are defined in this protocol
- Routing is established based on zone ID and node ID of the destination
- No path containing the nodes between the source and the destination is required.
- Therefore, no link break could cause any problem to the delivery of the information.


- Each node knows its physical location(node ID)
- Each node can determine its zone ID
- Each node maintains two link state packets(LSP)
 - node LSP: list of connected neighbors
 - zone LSP: list of connected zones

Source	Node LSP
6	8,15,16,G
8	6,12,16,B,D
12	8,16,F
15	6,16,G
16	6,8,12,15

Source	Zone LSP
Α	B,D,F,G
B	A,C
C	B,G
D	A,B,E
E	D,F
F	A,E,G
G	A,C,F

- Route establishment:
 - Check if destination is within zone
 - Location request packet
 - Location response packet


- Advantage:
 - No overlapping zones
 - The zone-level topology information is distributed to all nodes → reduces the traffic and avoids single point of failure
- Disadvantage:
 - Additional traffic produced by the creation and maintaining of the zone-level topology.

Routing Protocols with Efficient Flooding Mechanisms

- Many protocols flood the network with RouteRequest packets in order to obtain a path to the destination
- Flooding of control packets results in:
 - Wastage of bandwidth
 - Increase in number of collisions
- Efficient flooding mechanism:
 - Preferred link—based rooting(PLBR) protocols
 - Optimized link state routing(OSLR) protocol

- Reactive rooting protocols
- Basic concept:
 - Each node maintains two tables: NT and NNT
 - Each node selects a subset called Preferred List(PL)
 - K: the size of the PL
 - Preferred List construction:
 - Neighbor Degree-based Preferred Link Algorithm
 - based on neighbor nodes' degree
 - divides its neighbor nodes to reachable and unreachable
 - Weight-based Preferred Link algorithm
 - based on the weight given to a node
 - its weight is based on its neighbors' temporal and spatial stability

- RouteRequest packet:
 - Source node's address
 - Destination node's address
 - Unique sequence number
 - Traversed Path
 - Preferred List
 - Time to Live field
- RouteRequest packet is always broadcasted to all node's neighbors
- Only the ones in PL can forward it!

- Route establishment
 - Preferred List
 - Broadcast
 - Only nodes in PL forward the broadcast
- Path selection
 - shortest path
 - least delay path
 - most stable path

- Link break:
 - PLBR uses a quick route repair mechanism to bypass the broken link using information about the next two hops from NNT.
- Advantage:
 - The efficient flooding mechanism → reduces the routing control overhead and provides better solutions than the other reactive protocols
 - A flooding efficient protocol has higher scalability and decreases the network collisions.
- Disadvantage:
 - Both PLBR and WBPL are much more computationally complex than the other reactive protocols.

Optimized Link State Routing (OLSR) protocol

- Proactive(table-driven) routing protocol: periodic information exchange
- Basic concept: the use of multipoint relaying(MPR) technique
- MPR is a subset of node's neighbors
 - Minimum one-hop nodes \rightarrow access to all of the two-hop nodes
 - Only MPRs retransmit the packets!!!
- Since MPRset is selected \rightarrow two-hop neighborhood is known
- The MPRset is re-calculated when a change is detected in the neighborhood:
 - bidirectional link break or
 - bidirectional link appearance.

Optimized Link State Routing (OLSR) protocol

- MPRs are selected among the one-hop neighbors with a bidirectional link
- Periodic broadcast of HELLO messages
 - Hello message is received by all the one-hop neighbors
 - Hello message contains:
 - a list of neighbors with which the node has bidirectional link
 - a list of neighbors from which the node has received HELLO message but their link is not yet confirmed as bidirectional
- Advantage: Reduced number of broadcasts
- Disadvantage: Overlapping MPRsets
- Generally: OLSR is more suitable for large and dence networks