Practical Significance

• Multicast trees in ad-hoc networks emerge naturally from domains where
 ◦ Group of collaborators move in a new environment
 ◦ Collaboration is directed by one or more coordinators

• Such environments include
 ◦ Search and rescue missions
 ◦ Military campaigns
 ◦ Law enforcement
 ◦ Classrooms
 ◦ Conferences

• Requirements vary, for example QoS
 ◦ Military
 ◦ Multimedia
Outline

• Cover the main types of multicast trees
 ◦ source-tree-based
 ◦ shared-tree-based

• Cover the main design criteria
 ◦ Optimize for memory
 ◦ Optimize for bandwidth
 ◦ Optimize for robustness

• Describe representative examples of tree-based multicast protocols
Source-tree-based and shared-tree-based

- **Source-tree-based**: tree rooted at the source
 - Performs well at heavy loads, due to efficient traffic distribution

- **shared-tree-based**: tree rooted at a rendez-vous point
 - Scales well for multiple sources
 - Tree links get overloaded with traffic
 - Heavy dependence on the shared tree nodes
Memory, Bandwidth, Energy and Robustness

- **Memory**: each node having routing information infeasible in large networks
- **Bandwidth**: certain protocols overload some network connections causing slowdown
- **Energy**: certain use excessive amounts of intermediate nodes causing unreliable multi-hop links and battery usage
- **Added robustness**: (e.g. link count) usually increases administrative overhead
General: Building the multicast tree

Tree construction performed by

- source or
- destination
- A new destination might be able to join after tree creation

Route discovery by

- Flooding the full network or
- Sending to neighbors only
- Use caution to avoid loops

Using possibly some existing infrastructure
General: Recovering from link failure

Link failure identified by
- Periodic querying by beacons (proactive)
- Timeouts (reactive)
- RTS/CTS information (hw-assisted)

Link recovery initiated by
- The destination
- The upstream node
Tree-based Routing Protocols: Examples

- Multicast Zone Routing Protocol
- Multicast Core-Extraction Distributed Ad-Hoc Routing
- Differential Destination Multicast Routing Protocol
- Weight-Based Multicast Protocol
- Preferred Link-Based Multicast Protocol
- Ad-Hoc Multicast Routing Protocol

Multicast Zone Routing Protocol

- Shared-tree source-initiated
- Each node is associated with a zone
 - Inside the zone, node knows the topology
 - Outside the zone, let border nodes do routing
- Source constructs a tree in two phases
 \[A_1\] Send \texttt{TREE-CREATE} to all nodes in the zone
 \[A_2\] Willing nodes reply with \texttt{TREE-CREATE-ACK}
 \[B_1\] Send \texttt{TREE-PROPAGATE} to all nodes
 \[B_2\] Border nodes send \texttt{TREE-CREATE} to respective zones
MZRP (cont’d)

• Source maintains tree by periodic \texttt{TREE-REFRESH}.
 ◦ If a node in the tree does not receive \texttt{TREE-REFRESH}, it removes the stale multicast

• Receiver R disconnected because of failing intermediate node I
 ◦ R sends \texttt{TREE-JOIN} to the zone and connects
 ◦ R sends \texttt{JOIN-PROPAGATE} to border nodes
Multicast Core-Extraction Distributed Ad-Hoc Routing

Assume there is an underlying mesh of core nodes which form a minimum dominating set for all nodes.

- The mesh, called *mgraph*, is used as a robust infrastructure for forwarding data
- Resulting multicast tree is a source-tree
- Core nodes
 - are selected by election approximating the NP-complete problem
 - have complete knowledge on dominated neighbors
 - know the nearest core nodes in three-hop radius
- Multicast is based on reliable unicast
MCEDAR (cont’d)

- A new node C sends *JoinReq* to its dominator
 - Loops are prevented by a decreasing identity in *JoinReq*
 - A tree-node replies with *JoinAck* containing tree-node’s identity
 - The new node C accepts multiple *JoinAck*’s depending on the *robustness factor*

- Node C might have downstream core nodes, for which communication is forwarded

- Link quality is measured and bad quality is propagated faster than good quality

The protocol uses redundant links, combining the strengths of tree-based and mesh-based protocols
Differential Destination Multicast Routing Protocol

• Source nodes manage the multicast group membership
 ◦ Destinations join the source by unicast
 ◦ Source piggy-backs queries periodically to refresh list of destinations
• Each node independently decides to operate in
 ◦ Stateless mode or
 ◦ Soft-state mode
• explained in the following slide
DDM states (cont’d)

- **Stateless mode**
 - The route of the packet is coded in the data
 - No need for complicated routing
 - In large networks, overhead is high

- **Soft-state mode**
 - Every node may cache the routing information
 - The protocol needs not to list all destinations in every data packet
 - When routes change, upstream node sends a *difference* to the destinations
 - Significantly reduces the overhead
Weight-Based Multicast

Joining node R minimizes the cost to source by considering

- Number of required intermediate nodes
- Distance of R from source

The joining is done by flooding a $JoinReq$ with a TTL

- Tree nodes reply with a distance from source
- Distance is increased by each hop to the joining node
- Collect several of alternate routes
- The objective is to minimize function

$$Q = (1 - \text{joinWeight}) \times (n_h - 1) + \text{joinWeight} \times (n_h + n_s)$$

- n_h is the hop distance from joining node to tree node
- n_s is the hop distance from tree node to source
- $0 \leq \text{joinWeight} \leq 1$
To maintain the tree with high packet delivery capability, link failures are predicted in the following way:

- Neighbor nodes listen to communication in promiscuous mode.
- When receiving a packet piggy-backed with *TriggerHandoff*, and
 - node has information on the multicast tree, and
 - Distance from the tree is less than the node’s requesting handoff,
- the node sends *HandoffConf* to requesting node.

Requesting node selects the node nearest to the tree. If the handoff fails, rejoin.
Preferred Link-Based Multicast

A receiver-initiated protocol with local and tree-level topology, limiting forwarding nodes to preferred ones

- Neighbor-Neighbor Table (NNT)
 - A list of neighbors of the node in two steps
 - Used for quick repair of broken links

- Connect Table (CT)
 - Tree information
PLBM (cont’d)

- No flooding of network required if NNT contains tree node
 - Each node periodically sends a beacon with TTL
 - Nearby nodes will know of a tree node by the beacon

- Otherwise, use algorithm to determine candidates for connection
 - List potential nodes in the flood-packet
 - Only listed nodes will respond to flooding (by forwarding or replying)
 - Hopefully several good candidates, which receiver can choose from
Ad-Hoc Multicast Routing

A robust algorithm for high-mobility environment using underlying mesh

- Based on underlying IP network using IP unicast
- Builds a higher-level IP network tunnelled over the lower level IP
- Network is divided to groups having
 - At least one logical core
 - Selected by an election in case of multiple cores
 - Can thus change dynamically
 - zero or more normal nodes
- Network is periodically flooded by CREATE-TREE messages from cores
AMRoute (cont’d)

• Removing multiple cores
 ◦ Different segments may be joined by new nodes
 ◦ Two-core segment can be noticed by multiple tree creation messages
 ◦ In this case, a distributed core election algorithm is run by all nodes

• Adding a new core
 ◦ A disappeared core because of movement
 ◦ In a no-core segment, one of the nodes will announce itself as a core after a random period
Summary

- Several different approaches exits for tree-based Ad-Hoc routing protocols
 - Mesh-assisted
 - Source-initiated
 - Destination-initiated
 - Stateless
 - Semi-stateless
 - And others

- Most reports on the use seem to be simulated
 - The applicability of the methods are not known on practical domains, such as rescue missions, military campaigns and other domains