Ad-Hoc Wireless Networks: Architectures and Protocols Ch. 8.6: Tree-Based Multicast Routing Protocols

C. Siva Ram Murthy, B. S. Manoj

Antti Hyvärinen

April 4., 2007

Practical Significance

- Multicast trees in ad-hoc networks emerge naturally from domains where
 - Group of collaborators move in a new environment
 - Collaboration is directed by one or more coordinators
- Such environments include
 - Search and rescue missions
 - Military campaigns
 - Law enforcement
 - Classrooms
 - Conferences
- Requirements vary, for example QoS
 - Military
 - Multimedia

Outline

- Cover the main types of multicast trees
 - source-tree-based
 - shared-tree-based
- Cover the main design criteria
 - Optimize for memory
 - Optimize for bandwidth
 - Optimize for robustness
- Describe representative examples of tree-based multicast protocols

Source-tree-based and shared-tree-based

- Source-tree-based: tree rooted at the source
 - Performs well at heavy loads, due to efficient traffic distribution
- shared-tree-based: tree rooted at a rendez-vous point
 - Scales well for multiple sources
 - Tree links get overloaded with traffic
 - Heavy dependence on the shared tree nodes

Memory, Bandwidth, Energy and Robustness

- Memory: each node having routing information infeasible in large networks
- Bandwidth: certain protocols overload some network connections causing slowdown
- Energy: certain use excessive amounts of intermediate nodes causing unreliable multi-hop links and battery usage
- Added robustness: (e.g. link count) usually increases administrative overhead

General: Building the multicast tree

Tree construction performed by

- source or
- destination
- A new destination might be able to join after tree creation

Route discovery by

- Flooding the full network or
- Sending to neighbors only
- Use caution to avoid loops

Using possibly some existing infrastructure

General: Recovering from link failure

Link failure identified by

- Periodic querying by beacons (proactive)
- Timeouts (reactive)
- RTS/CTS information (hw-assisted)

Link recovery initiated by

- The destination
- The upstream node

Tree-based Routing Protocols: Examples

- Multicast Zone Routing Protocol
- Multicast Core-Extraction Distributed Ad-Hoc Routing
- Differential Destination Multicast Routing Protocol
- Weight-Based Multicast Protocol
- Preferred Link-Based Multicast Protocol
- Ad-Hoc Multicast Routing Protocol

Not covered in this presentation are Bandwidth-Efficient Multicast Routing Protocol, Associativity-Based Ad-Hoc Multicast Routing, Multicast Ad–Hoc On-Demand Distance Vector Routing, Ad-Hoc Multicast Routing Using Increased ID-Numbers and Adaptive Shared-Tree Multicast Routing

Multicast Zone Routing Protocol

- Shared-tree source-initiated
- Each node is associated with a zone
 - Inside the zone, node knows the topology
 - Outside the zone, let border nodes do routing
- Source constructs a tree in two phases
 - A_1 Send TREE-CREATE to all nodes in the zone
 - A_2 Willing nodes reply with TREE-CREATE-ACK
 - B_1 Send tree-propagate to all nodes
 - B_2 Border nodes send TREE-CREATE to respective zones

MZRP (cont'd)

- Source maintains tree by periodic TREE-REFRESH.
 - If a node in the tree does not receive TREE-REFRESH, it removes the stale multicast
- Receiver *R* disconnected because of failing intermediate node *I*
 - $^\circ~R$ sends tree-join to the zone and connects
 - $\circ R$ sends join-propagate to border nodes

Multicast Core-Extraction Distributed Ad-Hoc Routing

Assume there is an underlying mesh of core nodes which form a minimum dominating set for all nodes.

- The mesh, called *mgraph*, is used as a robust infrastructure for forwarding data
- Resulting multicast tree is a source-tree
- Core nodes
 - are selected by election approximating the NP-complete problem
 - have complete knowledge on dominated neighbors
 - know the nearest core nodes in three-hop radius
- Multicast is based on reliable unicast

MCEDAR (cont'd)

- A new node C sends JoinReq to its dominator
 - Loops are prevented by a decreasing identity in *JoinReq*
 - A tree-node replies with *JoinAck* containing tree-node's identity
 - The new node *C* accepts multiple *JoinAck*'s depending on the *robustness factor*
- Node *C* might have downstream core nodes, for which communication is forwarded
- Link quality is measured and bad quality is propagated faster than good quality

The protocol uses redundant links, combining the strengths of tree-based and mesh-based protocols

Differential Destination Multicast Routing Protocol

- Source nodes manage the multicast group membership
 - Destinations join the source by unicast
 - Source piggy-backs queries periodically to refresh list of destinations
- Each node independently decides to operate in
 - Stateless mode or
 - Soft-state mode
- explained in the following slide

DDM states (cont'd)

- Stateless mode
 - The route of the packet is coded in the data
 - No need for complicated routing
 - In large networks, overhead is high
- Soft-state mode
 - Every node may cache the routing information
 - The protocol needs not to list all destinations in every data packet
 - When routes change, upstream node sends a *difference* to the destinations
 - Significantly reduces the overhead

Weight-Based Multicast

Joining node *R* minimizes the cost to source by considering

- Number of required intermediate nodes
- Distance of R from source

The joining is done by flooding a *JoinReq* with a TTL

- Tree nodes reply with a distance from source
- Distance is increased by each hop to the joining node
- Collect several of alternate routes
- The objective is to minimize function

 $Q = (1 - joinWeight) \times (n_h - 1) + joinWeight \times (n_h + n_s)$

- n_h is the hop distance from joining node to tree node
- n_s is the hop distance from tree node to source
- $0 \leq join Weight \leq 1$

WBM (cont'd)

To maintain the tree with high packet delivery capability, link failures are predicted in the following way

- Neighbor nodes listen to communication in promiscuous mode
- When receiving a packet piggy-backed with *TriggerHandoff*, and
 - node has information on the multicast tree, and
 - Distance from the tree is less than the node's requesting handoff,
- the node sends *HandoffConf* to requesting node

Requesting node selects the node nearest to the tree. If the handoff fails, rejoin.

Preferred Link-Based Multicast

A receiver-initiated protocol with local and tree-level topology, limiting forwarding nodes to preferred ones

- Neighbor-Neighbor Table (NNT)
 - A list of neighbors of the node in two steps
 - Used for quick repair of broken links
- Connect Table (CT)
 - Tree information

PLBM (cont'd)

- No flooding of network required if NNT contains tree node
 - Each node periodically sends a beacon with TTL
 - Nearby nodes will know of a tree node by the beacon
- Otherwise, use algorithm to determine candidates for connection
 - List potential nodes in the flood-packet
 - Only listed nodes will respond to flooding (by forwarding or replying)
 - Hopefully several good candidates, which receiver can choose from

Ad-Hoc Multicast Routing

A robust algorithm for high-mobility environment using underlying mesh

- Based on underlying IP network using IP unicast
- Builds a higher-level IP network tunnelled over the lower level IP
- Network is divided to groups having
 - At least one logical core
 - Selected by an election in case of multiple cores
 - Can thus change dynamically
 - zero or more normal nodes
- Network is periodically flooded by CREATE-TREE messages from cores

AMRoute (cont'd)

- Removing multiple cores
 - Different segments may be joined by new nodes
 - Two-core segment can be noticed by multiple tree creation messages
 - In this case, a distributed core election algorithm is run by all nodes
- Adding a new core
 - A disappeared core because of movement
 - In a no-core segment, one of the nodes will announce itself as a core after a random period

Summary

- Several different approaches exits for tree-based Ad-Hoc routing protocols
 - Mesh-assisted
 - Source-initiated
 - Destination-initiated
 - Stateless
 - Semi-stateless
 - And others
- Most reports on the use seem to be simulated
 - The applicability of the methods are not known on practical domains, such as rescue missions, military campaigns and other domains