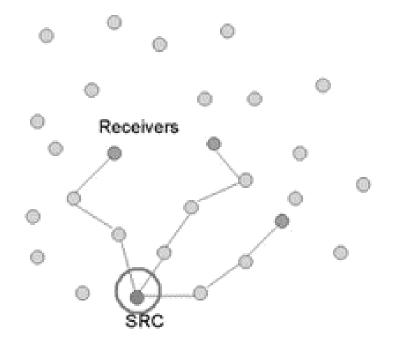

Multicasting in ad hoc networks: Energy efficient

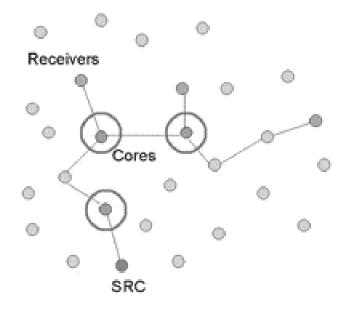
Blerta Bishaj bbishaj@cc.hut.fi

- o Introduction
- o Sources of power consumption
- o Directional antennas
- o TCP
- o Broadcast and multicast tree construction
- o Energy-efficient multicasting
- o Conclusions


Introduction

- o Multicasting, more complex in ad hoc networks
 - mobility
 - interference of wireless signals
 - broadcast communication
- Two types of multicasting protocols
 - source-based
 - core-based
- Energy is an issue
 - limited power supply
 - packets transceiving consumes power

Aim of power optimization Increase the lifetime of the network



Introduction Source-based protocols

- A tree for every source-group pair 0
- Bad scalability 0

Introduction Core-based protocols

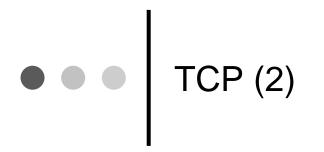
- Special nodes, cores, responsible 0 for multicast data distribution
- Only one multicast tree 0

Sources of power consumption

- o A mobile radio may be in three modes
 - transmit
 - receive
 - standby
- o Power consumpt. for packet processing not analyzed
- o As a transmitter,
 - send packets for control, request, response, data
 - send routed packets through this node
- o As a <u>receiver</u>, receive
 - own packets (control and data)
 - packets to be forwarded

- o Energy focus in one direction
 - Increases spatial reuse
 - Provides farther transmission
 - Contributes in the **wireless multicast advantage**

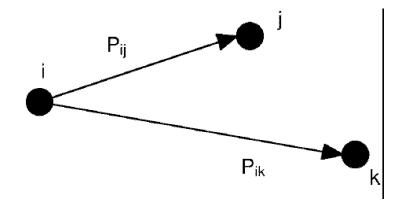
The overall amt. of energy spent is reduced


- o <u>Other advantages</u>:
 - Higher netw. capacity (more simult. conn., and fewer hops)
 - Improved connectivity (longer range)
 - Reduced eavesdropping

- o TCP uses timeouts and duplicate ACKs to indicate congestion
- o The wireless connections
 - high error rates, retransmissions at the data link layer
 - packets and ACKs are delayed
 - transmission slows down
 - packets are **retransmitted** (extra **energy spent** at the sender and at the intermediary nodes)

Possible solutions instead of TCP counters

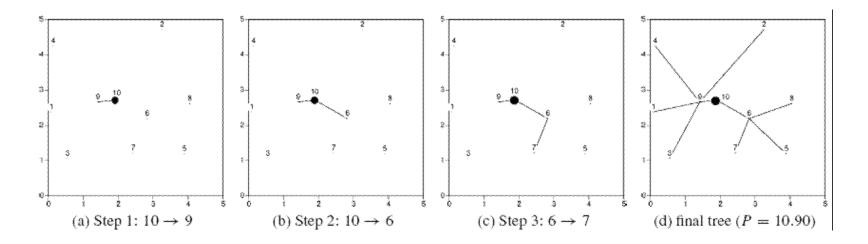
- Explicit Link Failure Notification (ELFN)
- Explicit Congestion Notification (ECN)



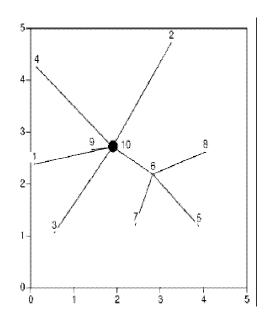
- o The mobility of the nodes
 - packets arrive along different routes
 - duplicate ACKs => retransmission => throughput reduced
 - increased energy consumption

Possible solution

- retransmit the packet
- not decrease traffic

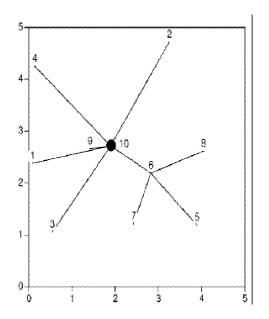

Broadcast and multicast tree construction
The wireless multicast advantage

The power to communicate with
nodes j and k:
$$P_{i,(j,k)} = \max(P_{ij}, P_{ik})$$


- The power required to transmit to the farthest node

Broadcast and multicast tree construction Broadcast Incremental Power (BIP)

- o Objective: minimum-power tree
- o Nodes added one at a time
- o Next node determined by least incremental power
- o Considers the wireless multicast advantage
- o MIP is obtained from pruning the undesired branches


Broadcast and multicast tree construction Broadcast Least Unicast (BLU)

 $\bullet \bullet \bullet$

- To construct the tree:
 - assumption of an underlying unicast alg. provides min distance unicast paths
 - **superposition of the best unicast paths** to the destinations
- The algorithm
 - fails to consider the wireless multicast advantage
 - MLU obtained by the superposition of only the routes to the desired destination nodes

Broadcast and multicast tree construction Broadcast Link-based Minimum-cost Spanning tree (BLiMST)

- To construct the tree:
 - Associate a link power-cost to each pair of nodes
- o The algorithm
 - fails to consider the wireless multicast advantage
 - MLU obtained by the **pruning** the **undesired nodes** from the tree

Energy-efficient multicasting for reliable data transfer

- 1. Energy-Efficient Reliable Broadcast and Multicast Protocols
- 2. A Distributed Power-Aware Multicast Routing Protocol
- 3. Energy-Efficient Multicast Routing Protocol
- 4. Energy-Efficient Cluster Adaptation of Multicast Protocol

I. Energy-Efficient Reliable Broadcast and Multicast Protocols

- o Reliability means that retransmission might be needed
- o Packet-error probability is considered
- BIP, BLU, BLiMST, MIP, MLU, and MLiMST can be modified to consider E_{ij(reliable)}

$$\mathsf{E}_{ij(reliable)} = \mathsf{E}_{ij} / (1 - p_{ij})$$

p_{ii} – packet-error probability

 $1 / (1 - p_{ij})$ – the expected rate of retransmission from node I to node j

2. A Distributed Power-Aware Multicast Routing Protocol

- An underlying unicast protocol implied
- Two possible metrics for minimal node-to-node path

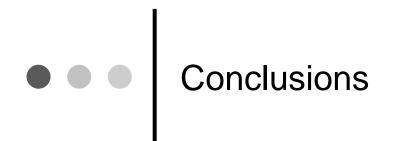
$$C = (P_{1,2} + P_{2,3} + ... + P_{j-1,j}) / \min(K_1, K_2, ..., K_j)$$

 \mathbf{K}_{i} – no of transceivers at node i \mathbf{P}_{ij} – power needed for transmitting a packet from node i to j $D_{i,i} = P_{i,i} / min(K_i,K_i)$

Then, **D** would be

$$\mathbf{D} = \mathbf{D}_{0,1} + \mathbf{D}_{1,2} + \dots + \mathbf{D}_{n-1,n}$$

S. Energy-Efficient Multicast Routing Protocol


- Two phases:
 - Minimum Energy Consumed per Packet (**MECP**)
 - Minimum Maximum Node Cost (MMNC)
- MECP considers the energy consumption for packet transmission along the path
- MMNC considers the **power level** at the **nodes** along the **path**
- o The two phases are alternated periodically

4. Energy-Efficient Cluster Adaptation of Multicast Protocol

- Proposed for cluster-based schemes
- Each cluster has a **head**
- The fewer cluster heads, the more energy spent by head to reach distant nodes
- The more cluster heads, the more energy spent for the overhead at the supernode level

Some balance is needed

- o Nodes start out as cluster heads
- o Information exchanged, they join clusters
- Nodes become head of cluster in turns (so some nodes do not power out fast)

- The wireless multicast advantage should be exploited
- Other efforts also combined (TCP, directional antennas)
- The ultimate purpose prolonging the lifetime of the network