

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2 - 10 cr) P V

professor Hannu H. Kari Laboratory for Theoretical Computer Science Department of Computer Science and Engineering Helsinki University of Technology (HUT), Espoo, Finland email: Kari [at] tcs [dot] hut [dot] fi

Credits

Material based on

- C. Siva Ram Murthy and B. S. Manoj: "Ad Hoc Wireless Networks: Architectures and Protocols
- Teemu Vainio: The Applicability of Bluetooth in Ad Hoc Networks, Master's thesis 2003, Helsinki Univ. of Tech, CSEdepartment

Errata

- Time to form ad hoc network with BlueTooth:
 - Correct figures:
 - With two nodes:
 - Depending on the inquiry duration:
 - 4s: about 20s to form a network
 - 8s: about 33s
 - 12s: about 40...50s
 - With three nodes:
 - Depending on the inquiry duration:
 - 4s: about 60-80s to form a network
 - 8s: about 110-120s
 - 12s: about 120-160s
 - Maximum time to converge the network was 240 seconds

Wireless networks

- Address vs. location
 - Hierarchical routing of packets based on IP-addresses
- Error prone media
 - 10 ^-4 bit error rate (wireless) vs. 10^-9 (wired)
- Dynamic topology
 - Connectivity restrictions
- Vague definition of "boundaries"
 - Access control problems

Wireless network eavesdropping

BlueTooth Sniper rifle: range 1500+ meters WiFi Sniper rifle: range 10+ km (http://www.tomsnetworking.com/2005/03/08/how_to_bluesniper_pt1)

Design goals

- Operation simplicity
- Power-efficiency
- Licence-free vs. licenced bands
- Interference tolerance
- Global usability
- Security
- Safety requirements
- Quality of service requirements
- Compatibility with other technologies

WLAN

- Infrastructure mode vs. ad hoc mode
 - Infrastructure mode
 - Association, reassociation, disassociation, distribution, integration
 - Authentication, deauthentication, privacy, data delivery
 - Basic service set (served by one access point, AP)
 - Extended service set (served by several APs)
 - Ad hoc mode
 - All nodes equal
 - No separate APs
 - Direct communication between mobile nodes is possible

IEEE 802.11 MAC protocol

- Carrier sensing in wired/wireless networks
 - Wired network:
 - e.g., CSMA/CD (Carrier Sense Multiple Access/Collision Detection)
 - Carrier (=transmission of other nodes) can be detected
 - Collisions can be detected
 - Wireless network:
 - CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
 - Carrier (=transmission of other nodes) can be detected
 - Collisions can't be detected
 - They should be avoided

IEEE 802.11 MAC protocol: Contention Window/Back-off time

- Contention Window (CW) for back-off timing
 - Window in which nodes may randomly access channel
 - E.g., IEEE 802.11a: CWmin = 15, CWmax=1023
 - Algorithm:
 - 1. CW= CWmin
 - 2. Transmission starts at random(0, CW)
 - 3. If collision, CW = min/(CW*2, CWmax), goto 2

- Adaptibility on the network load?
 - If node could know the number of active nodes, CW could be optimized

IEEE 802.11 MAC protocol: CSMA/CA

- Helsinki University of Technology
 - Distributed Cordination Function (DCF)
 - Inter-Frame Spacing (IFS)
 - DIFS (DCF IFS)
 - SIFS (Short IFS)
 - For high priority data transmission
 - RTS (Ready to send)
 - CTS (Clear to send)
 - NAV (Network Allocation vector)

Figure 2.2. IEEE 802.11 DCF and RTS-CTS mechanism.

IEEE 802.11 MAC protocol:

Parameter	802.11 (FHSS)	802.11 (DSSS)	802.11 (IR)	802.11b	802.11a
t _{slot}	$50 \ \mu sec$	$20 \ \mu sec$	8 μ sec	$20 \ \mu sec$	9 μ sec
SIFS	$28 \ \mu sec$	$10 \ \mu sec$	$10 \ \mu sec$	$10 \ \mu sec$	$16 \ \mu sec$
PIFS	SIFS $+t_{slot}$				
DIFS	$SIFS+(2 \times t_{slot})$				
Operating Frequency	2.4 GHz	2.4 GHz	850-950 nm	2.4 GHz	5 GHz
Maximum Data Rate	2 Mbps	2 Mbps	2 Mbps	11 Mbps	54 Mbps
CWmin	15	31	63	31	15
CWmax	1,023	1,023	1,023	1,023	1,023

IEEE 802.11 MAC protocol: State machine

IEEE 802.11 MAC protocol: Other functions

Helsinki University of Technology

- Point Coordination Function (PCF)
 - Used with AP-mode: To ensure maximum delays, minimum bandwidth, QoS
 - AP splits access time into "super frames", where higher priority nodes have better service
- Synchronization
 - Clock synchronization for power management, PCF, frequency hopping, ...
 - Beaconing can be used for synchronization
- Power Management
 - Sleep vs. active mode; Active vs. monitoring mode
- Roaming
 - Handing off a mobile node from one AP to another
- Encryption

Other short range wireless standards

- Helsinki University of Technology
 - Telestandards:
 - HiperLAN/1 ... dead
 - HiperLAN/2 ... dead

Other short range wireless standards: BlueTooth

Other short range wireless standards: Open standards

- Open/"Internet"-standards
 - Home RF, IrDA, ...
 - ZigBee: < 1Mbps
 - Low power, low speed, low cost device
 - Three node types:
 - ZigBee coordinator: Form network (tree) structure
 - ZigBee router: Route data
 - ZigBee end node: Send/receive data
 - Wibree: Max 1Mbps
 - Wireless USB: 400 Mbps

Questions

- Benefits of RTS/CTS over PCF?
- Difference between Hand-over & Hand-off?
- Complexity of MAC protocol (state machine) and potential DoS attacks?