

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2 - 10 cr) P V

professor Hannu H. Kari Laboratory for Theoretical Computer Science Department of Computer Science and Engineering Helsinki University of Technology (HUT), Espoo, Finland email: Kari [at] tcs [dot] hut [dot] fi

Practical issues

- How many credits:
 - 2 cr (ECTS) for one presentation (30 minutes) +slides +summary paper.
 - 1 cr (ECTS) for reviewing two summary papers and opponenting two other participants' presentations.
 - Either of them can be taken several times.
 - Additional credits can be achieved based on the number of presentations:
 - A presentation includes archivable slides and short summary. Credits are given with the following rules:
 - 3 ECTS per topic (for dissertation)
 - 2 ECTS per topic for master's thesis and
 - 1 ECTS for journal/proceeding.

Practical issues

- Dates:
 - Seminar schedule: Wednesdays 14-16
 - Topic selection deadline: 31.1.2007

Credits

- Material based on
 - C. Siva Ram Murthy and B. S. Manoj: "Ad Hoc Wireless Networks: Architectures and Protocols
 - Stefano Marinoni:" Performance of wireless ad hoc routing protocols — a simulation study in realistic environments", Master's thesis

http://www.tcs.hut.fi/Publications/bibdb/MarinoniMsc.pdf

Spectrum

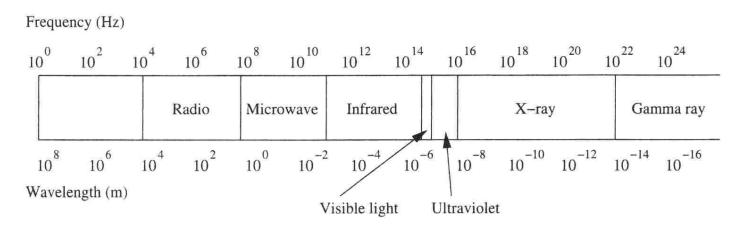
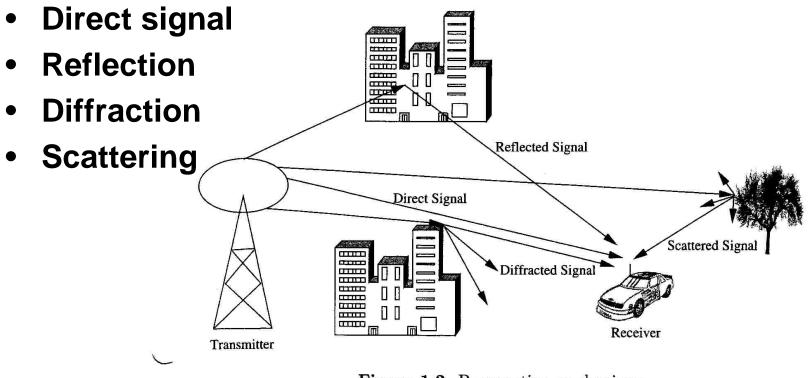


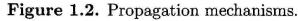
Figure 1.1. The electromagnetic spectrum.

Radio spectrum

	Band Name	Frequency	Wavelength	Applications
	Extremely Low	30 to 300 Hz	10,000 to 1,000 Km	Powerline
	Frequency (ELF)			frequencies
	Voice	300 to 3,000 Hz	1,000 to 100 Km	Telephone
	Frequency (VF)			communications
	Very Low	3 to 30 KHz	100 to 10 Km	Marine
	Frequency (VLF)			communications
	Low	30 to 300 KHz	10 to 1 Km	Marine
1	Frequency (LF)			communications
	Medium	300 to 3,000 KHz	1,000 to 100 m*	AM
	Frequency (MF)			broadcasting
	High	3 to 30 MHz	100 to 10 m	Long-distance
	Frequency (HF)			aircraft/ship
	-			communications
	Very High	30 to 300 MHz	10 to 1 m	FM
	Frequency (VHF)			broadcasting
	Ultra High	300 to $3,000$ MHz	100 to 10 cm	Cellular
	Frequency (UHF)			telephone
	Super High	3 to 30 GHz	10 to 1 cm	Satellite
	Frequency (SHF)			communications,
l			-	microwave links
	Extremely High	30 to 300 GHz	10 to 1 mm	Wireless
	Frequency (EHF)			local loop
	Infrared	300 GHz to 400 THz	1 mm to 770 nm	Consumer
				electronics
	Visible Light	400 THz to 900 THz	770 nm to 330 nm	Optical
L				communications

Table 1.1. Frequency bands and their common uses


* Throughout this book, the unit *m* refers to meter(s).



Helsinki University

of Technology

Radio propagation mechanisms

Path loss: Open space

$$P_{r} = P_{t}G_{t}G_{r}\left(\frac{\lambda}{4\pi d}\right)^{2}$$
where
$$P_{r}receive \text{ power}$$

$$P_{t}transmission \text{ power}$$

$$G_{t}transmission \text{ gain}$$

$$G_{r}receive \text{ gain}$$

$$\lambda wavelength$$

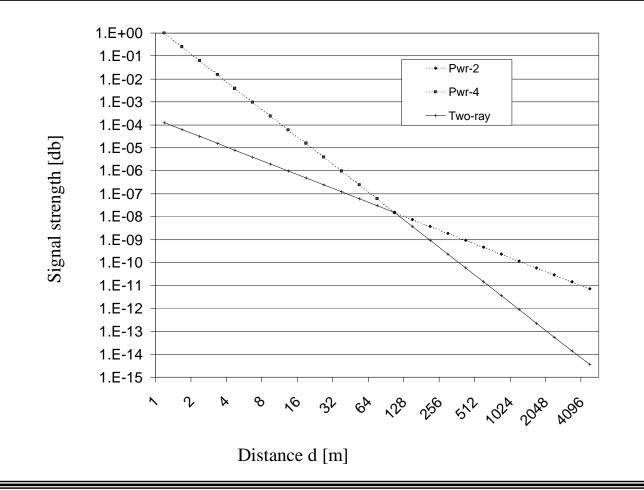
<u>d distance betweentransmitter/receiver</u>

Path loss: Two ray ground model

$$P_r = P_t G_t G_r \left(\frac{h_t h_r}{d^2}\right)^2$$

where h_r receiver height from ground h_t transmitter height from ground or

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 \left(\frac{4\pi h_t h_r}{d}\right)^2 = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 \left(\frac{d_{tresh}}{d}\right)^2$$

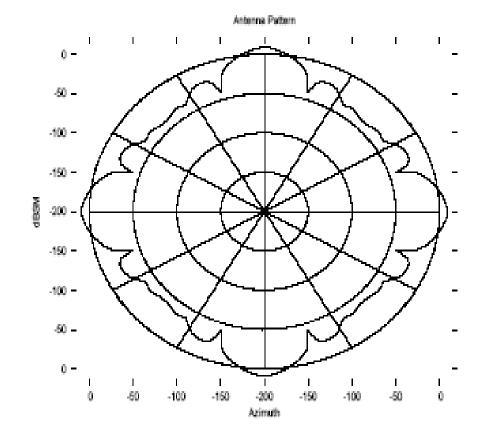

where

$$d_{tresh} = \frac{4\pi h_t h_r}{\lambda}$$

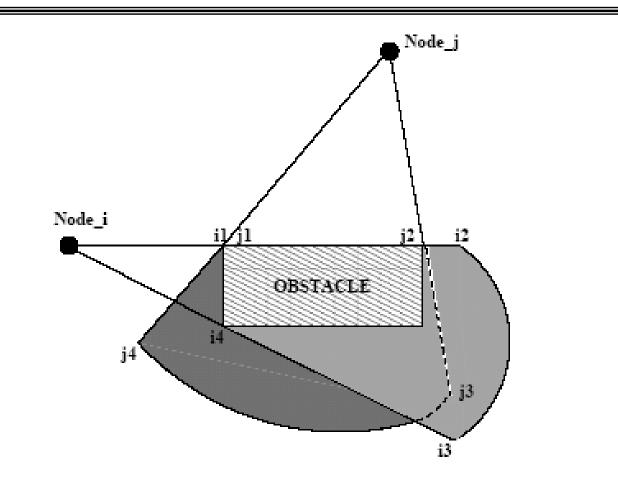
T.79.7001/5401: Spring 2007

Path loss: Two ray ground model

Path loss: Strong attenuation


$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi}\right)^2 \frac{1}{d^{\gamma}}$$

where


y propagation coefficient between2 (open space) and 5 (strong fading)

Impact of antenna

Impact of obstacles

T.79.7001/5401: Spring 2007

Fading

- Fast fading (small-scale fading)
 - Rapid fluctuation of signal (amplitude, phase, interference due to multi-path transmission
 - If no line-of-sight signal: Rayleigh fading

- If line-of-sight signal available: Ricean distribution (indoor situation)
- State of the state

- Slow fading (large-scale fading)
 - Attenuation due to objects between transmitter and receiver
 - Fading lasts longer time (seconds or minutes)

Interference

- Adjacent channel interference
 - Signal disturbed by adjacent frequency transmission
- Co-channel interference
 - Interference caused by transmission at the same frequency

Doppler shift

Caused by movement of transmitter and receiver (actually relative movement of them)

$$f_{d} = \frac{v}{\lambda}$$

where
 f_{d} doppler effect on frequency
 v relative frequency
 λ wavelenght

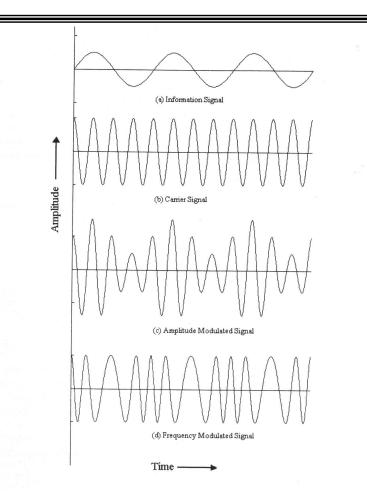
Transmission rate constraints

Nyquist's theorem

 $C = 2 B \log_2 L$

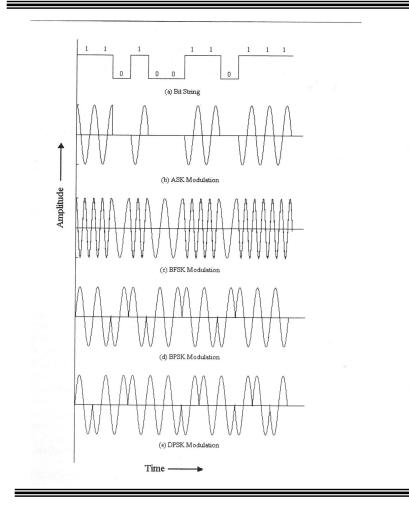
whereC maximum channel capacityB used bandwidth [Hz]L number of discrete signal levels

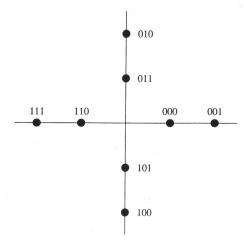
• Shannon's theorem $C = B \log_2(1 + (S/N))$


S/N	bit/s/Hz	SNR
1	1	0
2	1.584963	3
4	2.321928	6
10	3.459432	10
100	6.658211	20

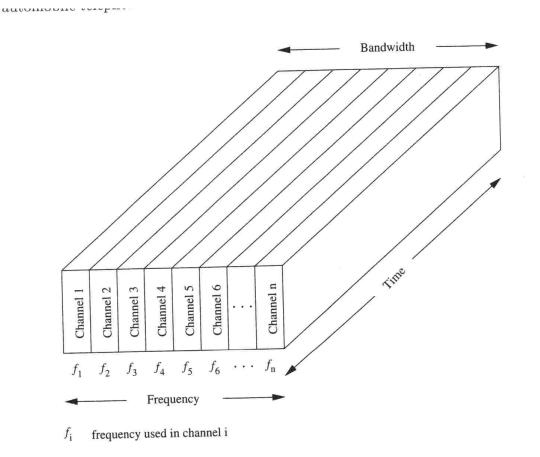
where C maximum data rate B bandwidth [Hz] S signal power N noice power $SNR=10 \log_{10}(S/N)$

T.79.7001/5401: Spring 2007




Modulation techniques: Analog modulations

Modulation techniques: Digital modulations

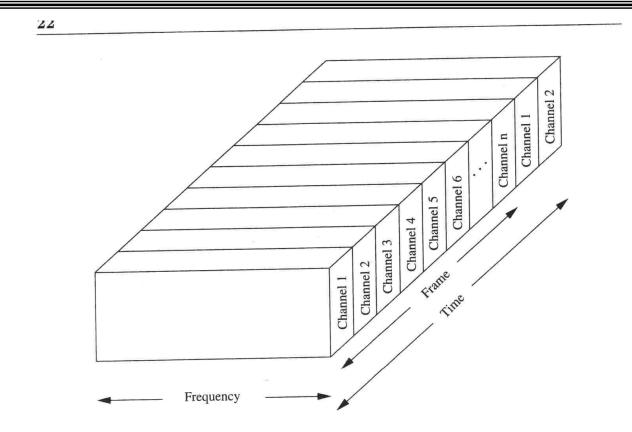

T.79.7001/5401: Spring 2007

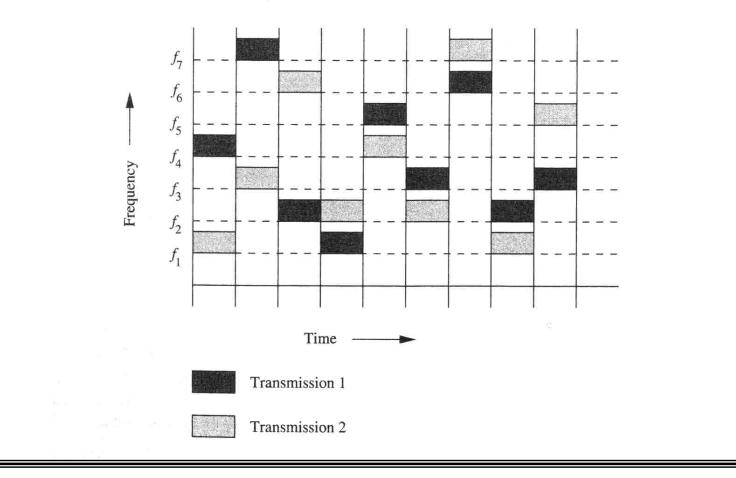
Hannu H. Kari/HUT/CS/TCS

FDMA: Frequency Division Multiple Access

Helsinki University of Technology

TDMA: Time Division Multiple Access




Figure 1.8. Illustration of TDMA.

Helsinki University

of Technology

CDMA: Code Division Multiple Access

SDMA: Space Division Multiple Access

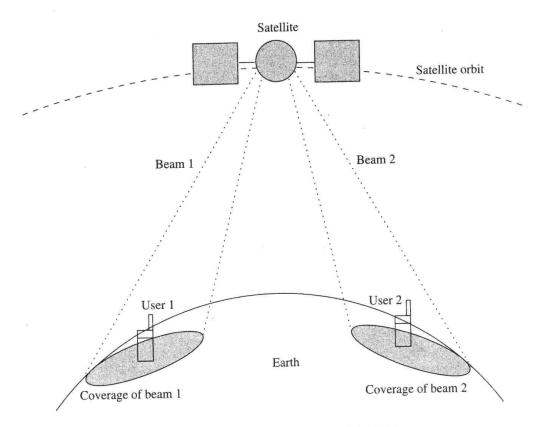


Figure 1.11. Illustration of SDMA.

Error control

- Detection
 - Parity check
 - Cyclic Redundancy Check
 - Digital signatures
- Forward error correction (FEC)
 - Hamming coding
 - Convolutional coding
 - Turbo codes

Automatic Retransmission reQuest (ARQ)

Questions

- Why X-rays or Gamma rays are not used in communication?
- Which modulation mechanism is best for ad hoc networks:
 - FDMA, TDMA, CDMA, or SDMA?
- Is there need to consider doppler shift in ad hoc networks
- Impact of Fast/Slow fading in ad hoc networks and simulating them?
- Impact of asymmetry of antenna?
- Impact of obstacles?