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Overview

◮ Interpolants

◮ Monotone circuits

◮ How to convert CP proofs to a monotone real circuit

◮ Broken Mosquito Screen Problem

◮ Shortly go through the proof for superpolynomial lower bound
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From CP to an Interpolant
Notes to the proof

Interpolants

Let p,q, r be pairwise distinct sets of propositional variables and
Φ(p,q),Ψ(p, r) formulas over variables p,q resp. p, r.

◮ Remember from Jori’s presentation that if Φ(p,q) → Ψ(p, r)
is a tautology, then

◮ There exists I (p) such that Φ(p,q) → I (p) and I (p) → Ψ(p, r)

◮ Given a truth assignment a for the variables, we have the
following:

◮ if I (a) is false, we know that Φ(p,q) is false
◮ if I (a) is true, we know that Ψ(p, r) is true
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The idea of the CP proof

◮ We will present a way of transforming every CP proof of a
certain tautology of form Φ(p,q) → Ψ(q, r) to an interpolant

◮ We will see that the interpolant can be presented as a
monotone boolean function computing over real numbers

◮ We will show that the interpolant has to be large, so that the

proof length will be of order 2N
1
8 where N is the size of the

input.
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Interpolants with disjunctive tauotology

◮ We may write the formula Φ(p,q) → Ψ(p, r) in disjunction
form ¬Φ(p,q) ∨ Ψ(p, r)

◮ It will be more natural to refute two conjuncts A(p,q),B(p, r)
so that

◮ if I (p) is false, then A(p,q) is true and
◮ if I (p) is true, then B(p, r) is true

◮ This is motivated by the set of equations used for CP
refutations
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Monotone real circuits

◮ Inputs are at the bottom of the circuit and output is at the top

◮ Logic can compute any real numbers, but inputs are 0 and 1

◮ Also the output is assumed to be 0 or 1

◮ Gates are unary or binary

◮ A gate is allowed to compute any monotone nondecrasing
function of the inputs

◮ if output is γ for inputs α, β, and output is γ′ for inputs α′, β′,
then

(α ≤ α′) ∧ (β ≤ β′) ⇒ (γ ≤ γ′)

◮ Inputs are considered to be gates
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From CP to an Interpolant

We will study the CP proof of the contradiction 0 ≥ 1 from
inequalities ∑

k

ci ,kpk +
∑

l

bi ,lql ≥ Ai , i ∈ I

∑

k

c ′j ,kpk +
∑

m

dj ,mrm ≥ Bj , j ∈ J

with p,q, r disjoint variables. There is a circuit C (p) such that for
each truth assignment a,

C (a) = 0 ⇒
∑

k

ci ,kak +
∑

l

bi ,lql ≥ Ai , i ∈ I are unsatisfiable

C (a) = 1 ⇒
∑

k

c ′j ,kak +
∑

l

dj ,mrm ≥ Bj , j ∈ J are unsatisfiable
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Notes to the proof

◮ If all the coefficients ci ,k are nonnegative or all the coefficients
c ′i ,k are nonpositive, the proof gives a monotone real boolean
function

◮ We need

1. Addition of an integer constant,
2. multiplication by an integer constant
3. addition
4. division by a positive integer constant with rounding
5. a threshold gate as the output gate (t(x) = 1 if x ≥ 1 and

t(x) = 0 otherwise)

◮ All but (2) (with negative constant) are monotonic. The proof
does not need to multiply with negative numbers (home
excercise)
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Idea of the proof
Fences
The lower bound proof

Broken Mosquito Screen Problem (BMS)

◮ Graph of m2 − 2 vertices, represented as a string of bits with
1 if there is an edge between i , j and 0 otherwise.

◮ Graph is good if there is a partition of vertices into m − 1
m-cliques and one m − 2-clique

◮ Graph is bad if there is a partition of vertices into m − 1
m-anticliques and one m − 2-anticlique.

◮ No instance is both good and bad.

◮ If an edge is added to a good graph, it remains good

◮ If an edge is removed from a bad graph, it remains bad

◮ There are graphs which are neither good or bad

Sounds good for monotone proofs
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Idea of the proof

◮ We define a mapping µ from the set of graphs A to the gates
E of the circuit

◮ We prove that the “graph density” of a gate, ||µ−1(E )|| must
be small

◮ We conclude that the number of gates, ||A||
||µ−1(E)|| must be large

The set of graphs we are considering is a subset of the set G0 ∪B0,
where

◮ G0 is the set of maximal good graphs

◮ B0 is the set of maximal bad graphs

These are the most difficult graphs
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Idea of the proof
Fences
The lower bound proof

Iterating the circuit

◮ µ will map a subset of G0 ∪ B0 to edges, so that
◮ a suitable graph is selected from the set Gi ∪ Bi , and
◮ a new iteration is started with the element removed from

either G0 or B0 depending on whether the graph is good or
bad, yielding in a new set G1 ∪ B1.

◮ The process is continued until no more suitable graphs exist in
the set Gj ∪ Bj

◮ The set A will then be (G0 ∪ B0) \ (Gj ∪ Bj)
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Fences

◮ A good graph g ∈ Gi flows through a gate E if E (gi ) = 1.

◮ A fence around g at gate E is a conjunction
C = x1 ∧ · · · ∧ xq, where xi are inputs such that C (g) = 1 and
(∀b′ ∈ Bi)[(E (b′) = 0) ⇒ (C (b′) = 0)]

◮ A similar definition holds for b ∈ Bi and disjunction
D = x1 ∨ · · · ∨ xq

◮ A minimal fence is the fence with fewest variables

Fences might get other graphs wrong, they are only concerned
with the particular selected graph
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Selecting the graphs to the domain

◮ A fence is long if the number of variables in it is greater than
m/2

◮ Let E0 be the lowest and leftmost graph in the circuit such
that there is a graph d0 ∈ G0 ∪ B0 that flows through E0 and
requires a long fence.

◮ Map the graph d0 to E0, and remove it from G0 ∪ B0 to yield
G1 ∪ B1

◮ Continue until no more long fences exist

◮ The size of the domain of µ will be at least

||G0|| =
(m2 − 2)!

(m!)m−1(m − 2)!(m − 1)!
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The lower bound proof

◮ The overapproximation of ||µ−1(E )||, number of graphs
mapped at a single gate, given below, follows from a rather
long combinatorial argumentation

(km)r/2(m2 − m)r/2(m2 − 2 − r)!

(m!)m−1(m − 2)!(m − 1)!

◮ k is m/2

◮ r is the greatest even number ≤ √
m

◮ The number of circuits will then be

(m2 − 2)!

(km)r/2(m2 − m)r/2(m2 − 2 − r)!
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Broken Mosquito Screen Problem
Idea of the proof
Fences
The lower bound proof

Finally

◮ By careful approximation, we can deduce that the previous
formula is greater than

(m2 − 1 − r/2)r/2/(km)r/2

◮ When m > 4, this is greater 1.8r/2 yielding 1.8
√

m/2 and when
taking into account the size of the input w.r.t m (not
presented), we have for the size of the circuit the lower bound

2m1/8

◮ The reference [Pud97] gives a tighter lower bound, but the
proof is more complicated. However the set of graphs used in
the proof are simpler
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Conclusions

◮ We gave a method how to convert CP proofs of formulas of
certain types to monotone real circuits

◮ We presented the Broken Mosquito Screen problem as a
candidate for an exponential lower bound for CP

◮ We did not give the formulation of BMS problem as a CP
formula

◮ A polynomial formulation is given in the book
◮ The formulation satisfies the non-negativity conditions on the

factors of p required in the monotone circuit proof
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