Resolutions Tseitin-Urquhart's Odd-Charged Graphs

Leo Bhebhe

Contents

- Introduction
- Tseitin-Urquhart's
 - Graphs
 - Charge equations
 - Clauses associated with the graph
- Key property of the odd-charged graphs
- Proof of the Tseitin-Urquhart's graph properties

Introduction

- Tseitin associated propositional formulas with labeled undirected graphs
- He developed a technique for obtaining lower bounds for regular resolution refutations
- Resolution allows, on any branch of the refutation tree, at most one resolution on any particular variable

Tseitin's odd-charged graphs (1/)

G = (V,E) vertex, edges

Assign weight *w(u)*={0,1} to each node, **u**

Weight to each node is called a charge

Total charge *w(G)* is sum the sum modulo 2 of all the charges *w(u)* for

u e V

Edge are literals such that if edges e, e' labeled with $\ell \ell'$ respectively, then $\{e, \neg e\}^{I} \cap \{\ell, \neg \ell'\} = \phi$

'i.e. if literal α labels edge e, then neither α nor $\overline{\alpha}$ can label another edge

Tseitin's odd-charged graphs (2/)

If $p1,...,p_{deg(u)}$ are literals attached to a node u, Let E(u) denote the equation

 $p1 \oplus \ldots \oplus p_{deg(u)} = w(u)$, where deg(u) is that number of edges adjacent to u, E(u)

Let C(u) be a set of clauses formed by the <u>conjunctive normal form</u> of equation E(u)

And let C(G) be the union over $C \in V$ of the sets C(u) of claues

It is clear that the number of sets of clause is

$$\left|C(u)\right| = 2^{\deg(u)-1}$$

Tseitin's odd-charged graphs (3/)

Charge Equations are denoted as follows:

1.
$$y \oplus u = 0$$

2. $y \oplus x \oplus z = 1$
3. $z = 0$
4. $x \oplus u = 0$

The Teistin clauses associated with the graph G are the clauses corresponding to the CNF formulation of the charged equations:

1.
$$\{\overline{u, y}, \}, \{u, y\}$$

2. $\{x, y, z, \}, \{x, \overline{y, z}\}, \{\overline{x, y, z}\}, \{\overline{x, y, z}, \}$
3. $\{\overline{z}\}$
4. $\{x, u\}, \{\overline{x, u}\}$
 $[C(u)| = 2^{\deg(u)-1}$
 $|C(u)| = 2^{\deg(u)-1}$
 $|C(u)| = 2^{3-1} = 2^2 = 4$
e.g. Clause 2

When considering proof size, we are thus only interested in graph families of bounded degree

Resolutions: Odd-charged Graphs& Schöning Expander Graphs LB/ Oct 15, 2007

Tseitin's odd-charged graphs (4/)

We know there's a function which gives 0			
	<i>-f</i> = (a∧b) v (¬ a∧ ¬b)		
Therefore	f = ¬(<i>(a</i> ∧b <i>)</i> v (¬a∧¬b))		
	$f = \neg(a \land b) \land \neg (\neg a \land \neg b)$		
	f = (¬ <i>a</i> v ¬b) ∧ (a v b)		
	x⊕y= 1 ≡ (¬ <i>a</i> v ¬b <i>)</i> ∧ (a v b)		
	x⊕y=0≡ <i>(a</i> ∧b)v(¬a∧¬b)		
So, $\overline{y} \oplus u = 0 \equiv (\neg(\neg y) \lor u) \land (\neg y \lor \neg y)$			
	$\overline{y} \oplus u = 0 \equiv (y \lor u) \land (\neg y \lor \neg u)$		

а	b	XOR
1	1	0
1	0	1
0	1	1
0	0	0

Tseitin's odd-charged graphs (5/)

The key property of the odd-charged graphs is given by the the following:

The connected graph G is <u>odd-charged</u>

- If the sum mod 2 of all vertex charges is 1
- If and only if the clauses C(G) are unsatisfiable

C(G) is unsatisfiable $\iff w(G) = 1$

Tseitin's odd-charged graphs (6/)

For a *G* connected graph C(G) is unsatisfiable $\ll w(G) = 1$

Proof:

Let E(G) denote the system {E(u): $u \in V$ }

1st we prove (<=), Assume w(G)= 1,

The modulo 2 sum of the left hand is 0 since each literal is attached to two vertices

By assumption the right-hand side of E(G) is 1.

Hence there's no truth assignment satisfying C(G)

Tseitin's odd-charged graphs (7/)

Next we prove (=>), Assume w(G)=0We show that C(G) is satisfiable.

Let G_p be obtained from G by interchanging p and $\neg p$ and by complementing the charges of the vertices incident to p.

Clearly, the system E(G) and $E(G_p)$ have the same truth assignments

If nodes *v*, *u* have same charge=1,

Then $u=u_1,...,u_r = v$ forming a path from *u* to *v*

For any truth assignment δ , and any vertex u let $w_{\delta}(u)$ be the sum of modulo 2

Tseitin's odd-charged graphs (8/)

If *N* denotes the number of clauses of the formula Φ_n under consideration

E.g. number of clauses of
$$PHP_n^{n+1}$$
 is $N = \Theta(n_{\Phi_n}^3)$

Then, Haken's lower bound shows that in fact the optimal resolution derivation of the empty clause from

$$\neg PHP_{n}^{n+1} \quad \text{must have} \quad 2^{\Theta(N^{\frac{1}{3}})}$$
Q. Are there examples of Φ_{n} with shortest resolution of size $2^{\Omega(n)}$
Where $|\Phi_{n}| = O(n)$?

Tseitin's odd-charged graphs (9/)

 Φ_n we want to have a proof of size = 2^n

e.g. N =
$$|\Phi n|$$
 = 2n, therefore n = $\frac{N}{2}$ -,

substituting n the proof size becomes $2^{N/2}$

But if N =
$$|\Phi n| = cn^3$$
, therefore $n = \sqrt[3]{\frac{N}{c}}$

Then proof size becomes
$$2^{\sqrt[3]{\frac{N}{c}}}$$

As can be seen the proof size is not exponetial

Tseitin's odd-charged graphs (10/)

Let Hn be a bipartite graph consisting of two sides, each consisting of n=m nodes, such that each node is has a degree ≤ 5

There's a sequence Φ_n of valid formulas consisting O(n) many constant size clauses such that

Each $\neg \boldsymbol{\Phi}_n$ has a polonomial-size $n^{O(1)}$ Frege refutation proof

But every refutation size has 2 $^{\Omega(n)}$

Each of the node of the new graph has a degree ≤ 7 and hence the clauses are of constant.

The formula Φn is the disjunction of the formulas C, where C is a clause of C(Gn)Clearly is of size O(n)

Tseitin's odd-charged graphs (11/)

There's a constant d > 0 such that if V1 is a set of nodes of size $\leq n/2$ contained in one side of **Gn** and **v2** is the set of nodes in the opposite size of **Gn** connected to a node in **V1** by and edge, then

|V2| ≥ (1+d)*|V1|

Note: $d \le 4$, Since Gn has a degree at most 5

 $\mathbf{1}^{st}$ show that $\boldsymbol{\phi}n$ has a polynomial-size Frege proof. Denote the left(right) side of the charge equation E(u), Use propositional identities

$$p \oplus q \equiv \neg (p \leftrightarrow q)$$
$$(\neg p) \leftrightarrow (\neg q) \equiv p \leftrightarrow q$$
$$\bigoplus_{u \in V} I \ eft \ E(u) \leftrightarrow \bigoplus_{u \in V} right \ E(u)$$

To convert

To these into formulas consisting only of literals and the biconditional \leftrightarrow takes **O(n)** steps.

Using the <u>associative and communicative laws of the biconditional</u> we can move double literals to the front and eliminate these double occurrences.

Each of these steps takes $O(n^2)$ steps thus yielding the desired contradiction $0 \leftrightarrow 1$ in a total of $O(n^3)$ steps, each of length O(n)

Hence the size of Frege proof is $O(n^4)$

Tseitin's odd-charged graphs (12/)

Next we prove the lower bound of resolution refutations of C(Gn)

I'll leave this proof for homework

After proving this you can show that

For any partial truth assignment σ the clause **C** contains [*dn/16*] literals

Pages: 283-285

Schöning Expander Graphs and Resolutions (1/)

Shöning's simplification of Urqurt exponential lower bound of Tsein's refutations formulas for certain class of odd-charged graphs

Shöning proof uses two basic ideas

- 1. By setting chosen literals to 0 and 1 appropriately, kill off all large clauses
- 2. By appropriately toggling certain critical truth assignments, prove there's a remaining large clause (having many literals)

The ability to so toggle certain truth assignments uses the existence of certain expander graphs whose existence is proved by a new probabilistic construction.

Schöning Expander Graphs and Resolutions (1/)

- A (n, d, λ n)-graph is a bipartite (multi-) graph with n vertices on the left side and λ n vertices on the right side.
- Each vertex on the left has degree d, and each vertex on the right has degree d/λ
- A (n, d, λn) -graph is (α , β)-expanding if every subset S of vertices on the left side of n size n has more than λn neighbors on the right side, $0 < \alpha \le \beta < 1$ (Notice that β might depend on α)

There exits a family of undirected degree graphs Gn= (Vn, En) where

Vn = {1,...,n} such that every refutation of the related CNF Tseitin formula ϕn has at least 2 clauses

Summary

- Tseitin-Urquhart's graphs, charge equations and clauses associated with the graph
- Key property of the odd-charged graphs
- Proof of the properties and by obtaining lower bounds for regular resolution refutations
- Shöning's basic ideas for simplification of Urqurt exponential lower bound of Tsein's refutations formulas for certain class of odd-charged graphs