Eigenvalues and Random Walks
(section 1.5 of “Spectral Graph Theory” by Fan Chung)

Weighted (undirected) graphs: we have a weight function w: V x V — R satisfying

(a) w(u, v) = w(v, u)
(b) w(u, v) >0 and if u and v are not adjacent, w(u, v) = 0.

Then the degree d, of a vertex v is defined by:

dy = 2w w(u, v)
volG=>,d,

The normalized Laplacian of G is still defined as TY2LT™?, so we have
1-w(v,v)/d, ifu=v
2(u, v) =

—w(u, v) / (d, d,)*?, otherwise

The Rayleigh quotient characterization for the eigenvalues can be readily generalized for
weighted graphs.



Given a weighted graph G, we can define a random walk on it in a natural way, by specifying
the transition probabilities:

P(u, v) =w(u, v) / d,
Clearly, >, P(u, v) = 1.

For our Markov chain, if the initial distribution is f: V — R, 2., f(v) = 1, the distribution after k
steps is given by fP.

We call a Markov chain ergodic if there is a unique stationary distribution n(v) satisfying
lim fP*(v) = 7t(v)

for any initial distribution f.



From the theory of finite Markov chains we know that the necessary and sufficient conditions
for the ergodicity of P are:

(i) irreducibility (for any u, v, there exists s, such that P*(u, v) > 0)
(ii) aperiodicity (GCD{s: P°(u, u) > 0} = 1, which is a communicating class property)

It is easy to see that these two properties can be conveniently stated in the spectral terms. This is
what we have for undirected graphs:

irreducibility is equivalent to the condition that G is connected, that is, A, > 0.

aperiodicity is equivalent to the condition that G is not bipartite, that is, A,.; < 2.

A major problem of interest is the convergence rate of a given ergodic random walk:

Given an arbitrary initial distribution f, how many steps s are required for fP° to be close to the
stationary distribution?

As we will see shortly, the answer can be given in the terms of “spectral gap”, determined by A;
and Ap.1.



We start with the L,-norm convergence: || fP° — = ||..
Note that P = T7A = T¥3(1 - /)T
The stationary distribution must satisfy nP =« (if a; — =, then a;P — nP).

Since (1IT)P=1A=(dy, ..., d,) =1T, we see that n = (1/vol G) (dy, ..., d,) Is a natural candidate
for the stationary distribution.

Let {oi} be the orthonormal eigenbasis of /, where o; is associated with A;. Given an initial
distribution f, we write f T2 = 3, & oi.

We know that oo = (vol G)™? 1T2, s0 a, = (vol G)™2.
Then we have:
| fP° = || = || fP° - (L/vol G) 1T || = || fP° — ag g TYV2 | =

I FT250 = T2 = 2 9o T2 | = | (%5 & 00) (1 = )T = g o T | =



(since 2 is symmetric, @il = A @)

=1 Ziso @i (1= 2)" @i T | = | (Tiso @i (1= 2i)° ) TH || <

(s s X0) T2 = 10 da™, s X de )< Do (1O, -0 X))
< Omax 2 || Ziso @ (1= 1) @i || < dmax® (Ziso @ (1= 2)* )% <

< a2 ( Ziso @°)"2 MaXiso| L = Ai° =

(define A" as Ay if (1 -21) > (An1—1) oras (2-A,1) otherwise)
= e~ (Zis0 @) |1 =W <

(Ziad= [ £ TP = 3 (f2/d)) < (Zi i) / din = Ldlin )

< (Amaxddmin) ™2 | 1= A [P < exp(=sA’) (max/dmin)™? (since (1 = A") < exp(=\)) on [0, 1])



How many steps do we need to guarantee ||[fP°—m||<e?

s> (1/A) In( /e - (max/Drmin)*)

We can eliminate the dependence on A,.; by modifying the random walk slightly. Let’s modify
the weights in the following way:

w'(v,v) =w(v,v) +cd, where c=(A1+An1)/2-1

(note that we have c >0 if (1 —Ay) < (Ah1—1))

and w'(u, v) =w(u, v) ifu=v.

Then we have A/ =2/ (1 +c).

So,1-M/'=Api'=-1= (kn-l — 7&1) / (7\,1 + 7Ln_1).

This is called a lazy random walk.



A stronger notion of convergence: the relative pointwise distance.

We know that every row of matrix P of an ergodic random walk converges to .
We define the relative pointwise distance as:

A(S) = maxyy | P(y, X) = n(X) | / 7t(x)

Similar to the above, we can show that

A(S) < exp(-sr) (vol G/ dnin)

Why is the relative pointwise distance a stronger notion of convergence than the L,-norm one?
Given an initial distribution f, we have

| TP == () [/ m(x) < 2y f(y) (| Py, ) —m(x) [/ (X)) < 2 f(y) A(s) < A(S)

So, we obtained || fP*=m |l < A(S) ||7l|2



The Total Variation distance.
Arv(S) = 112 max, X | P°(y, X) = n(X) |
(half of the L;-distance)

Easy to see that Amy(S) < A(S)/ 2.



The case of directed graphs.
We can show the following:

If G is a strongly connected directed graph on n vertices, then we can define a lazy walk, such
that after at most t > 2/A; ((— In @min) + 2C) steps, we have

Arv(t) < exp(-c)/2,

where ¢ is the normalized Perron vector.

A subtlety: for directed graphs, the Perron vector components and eigenvalues can be
exponentially small in n. However, for certain “well-behaving” classes of graphs those values

are of the order of 1/ poly(n). For instance, that holds true for Eulerian graphs (in-degree of
each vertex is equal to its out-degree).
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