Vertex-partitions and the spectrum
(Biggs sec. 8)

Martti Meri
Definitions

colour-partition V_i: $V\Gamma = V_1 \cup V_2 \cup \ldots \cup V_l$, so that each $V_i (1 \leq i \leq l)$ contains no pair of adjacent vertices.

chromatic number $\nu(\Gamma)$ is the least natural number l for which such partition is possible.

vertex-colouring: assignment of vertex colours with adjacent vertices having different colour. Vertex-colouring with l colours gives rise to a colour partition with l colour-classes.

A graph is l-critical if $\nu(\Gamma) = l$ and for all induced subgraphs $\Lambda \neq \Gamma$ we have $\nu(\Lambda) < l$.
Lemma The chromatic number of a graph X is the least integer l such that there is a homomorphism from X to K_l. (Codsil and Royle)

A l-critical graph cannot have a homomorphism to any proper subgraph, and hence must be its own core. This provides a wide class of cores, including all complete graphs and odd cycles. (Codsil and Royle)

The Four Colour Theorem Every planar graph has a vertex-colouring with $l = 4$ colours
Definitions (cont.)

Rayleigh quotient: \(R(X; z) = \langle z, Xz \rangle / \langle z, z \rangle \)

maximum and minimum eigenvalues of \(X \) \(\lambda_{max}(X) \) and \(\lambda_{min}(X) \)

\[\lambda_{max}(X) \geq R(X; z) \geq \lambda_{min}(X) \]
for all \(z \neq 0 \).

Proof: \(U^t X U = D \). Substituting \(X = UDU^t \) and \(z = Uy \).

\[R(X; y) = \langle y, Dy \rangle / \langle y, y \rangle = y^t Dy / y^t (U^t U)y = \sum_i \lambda_i |y_i|^2 / \sum_i |y_i|^2 \]

so the equations above hold.
Proposition 8.3

(1) If Λ is an induced subgraph of Γ, then
$\lambda_{\text{max}}(\Lambda) \leq \lambda_{\text{max}}(\Gamma)$; $\lambda_{\text{min}}(\Lambda) \geq \lambda_{\text{min}}(\Gamma)$.

(2) If the greatest and least degrees among the vertices of Γ are $k_{\text{max}}(\Gamma)$ and $k_{\text{min}}(\Gamma)$, and the average degree is $k_{\text{ave}}(\Gamma)$, then
$k_{\text{max}}(\Gamma) \geq \lambda_{\text{max}}(\Gamma) \geq k_{\text{ave}}(\Gamma) \geq k_{\text{min}}(\Gamma)$.
Lemma 8.4 Suppose Γ is a graph with chromatic number $l \geq 2$. Then Γ has a l-critical induced subgraph Λ, and every vertex of Λ has degree at least $l - 1$ in Λ.

Proof: The set of induced subgraphs of Γ is non-empty and contains graphs with ν of l and graphs with ν of not l. Let Λ be an induced subgraph with $\nu(\Lambda) = l$, and with minimal $|V\Lambda|$, then Λ is l-critical. Since if Λ were not l-critical, there would be a induced subgraph $\Upsilon \neq \Lambda$ of Λ with $\nu(\Upsilon) \geq l$. But this means that Λ is not minimal in size of the induced subgraphs of Γ with $\nu(\Lambda) = l$.
If $v \in \Lambda$, then $\langle V \Lambda \setminus v \rangle$ is an induced subgraph of Λ and has a vertex-colouring with $l - 1$ colours. If the degree of v in Λ is less than $l - 1$, then we could extend this vertex-colouring to Λ, contradicting the fact that $\nu(\Lambda) = l$. Thus the degree of v is at least $l - 1$.
Proposition 8.5 For any graph Γ we have $\nu(\Gamma) \leq 1 + \lambda_{max}(\Gamma)$.

Lemma 8.6 Let X be a real symmetric matrix, partitioned in the form

$$A = \begin{pmatrix} P & Q \\ Q^t & R \end{pmatrix}$$

, where P and Q are square symmetric matrices. Then $\lambda_{max}(X) + \lambda_{min}(X) \leq \lambda_{max}(P) + \lambda_{max}(R)$.
Corollary 8.7 Let A be a real symmetric matrix, partitioned into t^2 submatrices A_{ij} in such a way that the row and column partitions are the same; in other words, each diagonal sub-matrix $A_{ii}(1 \leq i \leq t)$ is square, then

$$\lambda_{max}(A) + (t - 1)\lambda_{min}(A) \leq \sum_{i=0}^{t} \lambda_{max}(A_{ii}).$$

Theorem 8.8

For any graph Γ, whose edge set is non-empty,

$$\nu(\Gamma) \geq 1 + \frac{\lambda_{max}(\Gamma)}{-\lambda_{min}(\Gamma)}.$$