Cycles, Cuts and Spanning Trees

Cycles, Cuts and Spanning Trees

Sections 4 and 5 of ‘“Algebraic Graph Theory” by N. Biggs

Leena Salmela

March 13th, 2006

March 13th, 2006 Leena Salmela Slide 1



Cycles, Cuts and Spanning Trees

Finite sets and vector spaces

e X is a finite set. The set of all functions from X to C has the structure of
a finite dimensional vector space.

o If f: X - Candg: X — C, the vector space operations are defined as
follows:

(f+9)(z) = flz) +9(z), (af)(z)=af(z) (reX,acC)

e The dimension of the vector space 1s equal to the number of elements in
X.
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Vertex-space and edge-space

e Vertex-space Cy(I"): All functions from VT to C
- VI ={vy,va,...,v,} so the dimension is n.
— Any function 7 : VI' — C can be represented as column vector
y = [y1,y2,...,yn]" where y; = n(v;).

— This corresponds to the standard basis {w1,ws, . .., w,} defined by

1, ifi=j
w;(v;) = ,
0, otherwise
e Edge-space C1(I'): All functions from ET to C
— Dimension is m.
— The standard basis {€1, €3, ..., € }:
1, ifi=j

e;(e;) =
o 0, otherwise
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Orientation and incidence matrix

e For each edge one of the vertices is chosen to be the positive end and the
other 1s chosen to be the negative end.

e Incidence matrix D of I' with respect to the given orientation:

( : : .
+1, 1if v; 1s the positive end of ¢;

dij = —1, ifv; is the negative end of e;

L0, otherwise

e With respect to the standard bases D is a linear mapping from C' (I") to
Co(T).

e The incidence matrix has rank n — ¢ where c 1s the number of connected
components of I'.
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Cycles and the kernel of incidence mapping

e Definitions:
— Rankof I': r(I') =n — ¢
— Corank of I': s(I') =m —n+c

— If @) is a subset of edges such that the subgraph (@) is a cycle graph,
then () is a cycle in I'. Two possible cyclic orderings of vertices in
(@) and thus two possible cycle-orientations. Define £ as follows:

+1, if e belongs to () and its orientation = its cycle-orientation.

£o(e) = ¢ —1, if e belongs to ( and its orientation # its cycle-orientation.

L0, otherwise

e The kernel of incidence mapping D of I' is a vector space whose
dimension 1is equal to co-rank of I".

e If ()isacycleinI then {g belongs to the kernel of D.
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Definition of cycle-subspace and cut-subspace

e Define an inner product between two elements p and o of the edge-space
of I':

(p.0)= 3" ple)ole)

ec ET

e The cycle-subspace of I' is the kernel of the incidence mapping of I'.

e The cut-subspace of I' is the orthogonal complement of the
cycle-subspace in C (I") with respect to the inner product defined above.
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About cuts and the cut-subspace
e Partition the vertices of 1" into two non-empty disjoint sets: V' = V; U V5.

e If the set of edges [ which have one end in V7 and other in V5 is
non-empty, then H 1sacutin I’

e There are two possible orientations for the cut: Either V; contains all the
positive ends and V5 the negative ends or vice versa. Define £ :

+1, 1if e belongs to H and its orientation = its cut-orientation.

Er(e) = < —1, if e belongs to H and its orientation == its cut-orientation.

L0, otherwise

e The cut-subspace of I' is a vector space whose dimension is equal to the
rank of I' (which is n — ¢). If H i1s a cut in I then £ belongs to the
cut-subspace.
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The Laplacian matrix

D 1s the incidence matrix (with respect to some orientation) of a graph I' and
A is the adjacency matrix of I'. Then the Laplacian matrix () satisfies:

Q=DD'=A— A

where A is the diagonal matrix whose ¢:th diagonal entry is the degree of
vertex v;. Consequently () is independent of the orientation given to I'.

March 13th, 2006 Leena Salmela Slide 8



Cycles, Cuts and Spanning Trees

Spanning tree

e A spanning tree of I' 1s a subgraph which has n — 1 edges and contains no
cycles.
e Let I’ be a spanning tree in a connected graph 1

— For each edge g of I' which i1s not in T’ there is a unique cycle
cyc(1', g) in I' containing g and edges in 1" only.

— For each edge h of I' which is in 7" there is a unique cut cut(7’, h) in I'

containing h and edges not in T" only.

e We give cyc(T', g) and cut('T’, h) the orientation that coincides with the
orientation of g and h in I

e Then we have elements §(r 4) and £(7 ;) which belong to the edge-space
C1(T)
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Bases for the cycle-subspace and cut-subspace

e As g runs through the set ET' — T', the m — n + 1 elements {r ) form a
basis for the cycle-subspace of I'.

e As hruns through the set T, the n — 1 elements {7 ;) form a basis for
the cut-subspace of I
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Incidence matrix and spanning trees

e Any square submatrix of the incidence matrix D of I' has determinant
equal to O or +1 or -1.

e Let U be a subset of ET with |U| =n — 1. Let Dy be the
(n — 1) x (n — 1) submatrix of D consisting of those n — 1 columns that
correspond to U and any n — 1 rows. Then Dy is invertible if and only if
the subgraph (U) is a spanning tree of I
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Partitioning the incidence matrix

Label the edges so that edges belonging to a spanning tree 7' come first. The
incidence matrix can then be partitioned as follows:

D =

where D1 is an invertible (n — 1) x (n — 1) matrix and the last row d,, is
linearly dependent on the other rows.
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Basis for the cycle-subspace

e Let C' be the matrix whose columns are the vectors representing elements
§(T,e;) (n < j < m) with respect to the standard basis of C'; (I'). Then

C
C = g

Im—n-l—l

e Each column of C' is a cycle and thus belongs to the kernel of D so
DC = 0 and furthermore:

Cr =—-D7'Dy
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Basis for the cut-subspace

e Let K be the matrix whose columns represent the elements
f(T,ej)(l < j <n—1). K can be written in the form:

K —

e Each column of K belongs to the orthogonal complement of the
cycle-subspace so K*C' = 0. So Kt + Cr = 0 and

Kr = (D7'Dy)*
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Application to electric networks (1)
e An electrical network is a connected graph I'.

e The current and voltage vectors, w and z specify the physical
characteristics of the network. These vectors belong to the edge-space.

e If M 1s a diagonal matrix whose entries are the conductances of the edges
and n represents the externally applied voltages, then z = Mw + n.

e Kirchhoff’s laws:
Dw = 0, Ctz=0

e w and z can also be partitioned:

wr 2T

WN ZN
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Application to electric networks (2)

e Dw =0 gives Drwr + Dywy = 0 and since C'p = —D;lDN:

wT :CT’UJN and w :CUJN

e So all the entries of the current vector are determined by the entries
corresponding to edges not in 7.

e Substituting in z = Mw + n and premultiplying by C*:

(C'"MCYwy = —C'n

e C'MC is invertible so this equation determines wy and consequently
both w and z.
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