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Finite sets and vector spaces

• X is a finite set. The set of all functions from X to C has the structure of
a finite dimensional vector space.

• If f : X → C and g : X → C, the vector space operations are defined as
follows:

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) (x ∈ X, α ∈ C)

• The dimension of the vector space is equal to the number of elements in
X .
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Vertex-space and edge-space
• Vertex-space C0(Γ): All functions from V Γ to C

– V Γ = {v1, v2, . . . , vn} so the dimension is n.

– Any function η : V Γ → C can be represented as column vector
y = [y1, y2, . . . , yn]t where yi = η(vi).

– This corresponds to the standard basis {ω1, ω2, . . . , ωn} defined by

ωi(vj) =







1, if i = j

0, otherwise

• Edge-space C1(Γ): All functions from EΓ to C

– Dimension is m.

– The standard basis {ε1, ε2, . . . , εm}:

εi(ej) =







1, if i = j

0, otherwise
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Orientation and incidence matrix

• For each edge one of the vertices is chosen to be the positive end and the
other is chosen to be the negative end.

• Incidence matrix D of Γ with respect to the given orientation:

dij =















+1, if vi is the positive end of ej

−1, if vi is the negative end of ej

0, otherwise

• With respect to the standard bases D is a linear mapping from C1(Γ) to
C0(Γ).

• The incidence matrix has rank n − c where c is the number of connected
components of Γ.
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Cycles and the kernel of incidence mapping

• Definitions:

– Rank of Γ: r(Γ) = n − c

– Co-rank of Γ: s(Γ) = m − n + c

– If Q is a subset of edges such that the subgraph 〈Q〉 is a cycle graph,
then Q is a cycle in Γ. Two possible cyclic orderings of vertices in
〈Q〉 and thus two possible cycle-orientations. Define ξQ as follows:

ξQ(e) =















+1, if e belongs to Q and its orientation = its cycle-orientation.

−1, if e belongs to Q and its orientation 6= its cycle-orientation.

0, otherwise

• The kernel of incidence mapping D of Γ is a vector space whose
dimension is equal to co-rank of Γ.

• If Q is a cycle in Γ then ξQ belongs to the kernel of D.
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Definition of cycle-subspace and cut-subspace

• Define an inner product between two elements ρ and σ of the edge-space
of Γ:

(ρ, σ) =
∑

e∈EΓ

ρ(e)σ(e)

• The cycle-subspace of Γ is the kernel of the incidence mapping of Γ.

• The cut-subspace of Γ is the orthogonal complement of the
cycle-subspace in C1(Γ) with respect to the inner product defined above.
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About cuts and the cut-subspace

• Partition the vertices of Γ into two non-empty disjoint sets: V = V1 ∪ V2.

• If the set of edges H which have one end in V1 and other in V2 is
non-empty, then H is a cut in Γ.

• There are two possible orientations for the cut: Either V1 contains all the
positive ends and V2 the negative ends or vice versa. Define ξH :

ξH(e) =















+1, if e belongs to H and its orientation = its cut-orientation.

−1, if e belongs to H and its orientation 6= its cut-orientation.

0, otherwise

• The cut-subspace of Γ is a vector space whose dimension is equal to the
rank of Γ (which is n − c). If H is a cut in Γ then ξH belongs to the
cut-subspace.
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The Laplacian matrix

D is the incidence matrix (with respect to some orientation) of a graph Γ and
A is the adjacency matrix of Γ. Then the Laplacian matrix Q satisfies:

Q = DDt = ∆ − A

where ∆ is the diagonal matrix whose i:th diagonal entry is the degree of
vertex vi. Consequently Q is independent of the orientation given to Γ.
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Spanning tree

• A spanning tree of Γ is a subgraph which has n− 1 edges and contains no
cycles.

• Let T be a spanning tree in a connected graph Γ:

– For each edge g of Γ which is not in T there is a unique cycle
cyc(T, g) in Γ containing g and edges in T only.

– For each edge h of Γ which is in T there is a unique cut cut(T, h) in Γ

containing h and edges not in T only.

• We give cyc(T, g) and cut(T, h) the orientation that coincides with the
orientation of g and h in Γ.

• Then we have elements ξ(T,g) and ξ(T,h) which belong to the edge-space
C1(Γ)

March 13th, 2006 Leena Salmela Slide 9



Cycles, Cuts and Spanning Trees

Bases for the cycle-subspace and cut-subspace

• As g runs through the set EΓ − T , the m − n + 1 elements ξ(T,g) form a
basis for the cycle-subspace of Γ.

• As h runs through the set T , the n − 1 elements ξ(T,h) form a basis for
the cut-subspace of Γ.
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Incidence matrix and spanning trees

• Any square submatrix of the incidence matrix D of Γ has determinant
equal to 0 or +1 or -1.

• Let U be a subset of EΓ with |U | = n − 1. Let DU be the
(n − 1) × (n − 1) submatrix of D consisting of those n − 1 columns that
correspond to U and any n − 1 rows. Then DU is invertible if and only if
the subgraph 〈U〉 is a spanning tree of Γ.
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Partitioning the incidence matrix

Label the edges so that edges belonging to a spanning tree T come first. The
incidence matrix can then be partitioned as follows:

D =





DT DN

dn





where DT is an invertible (n − 1) × (n − 1) matrix and the last row dn is
linearly dependent on the other rows.
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Basis for the cycle-subspace

• Let C be the matrix whose columns are the vectors representing elements
ξ(T,ej)(n ≤ j ≤ m) with respect to the standard basis of C1(Γ). Then

C =





CT

Im−n+1





• Each column of C is a cycle and thus belongs to the kernel of D so
DC = 0 and furthermore:

CT = −D−1
T DN
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Basis for the cut-subspace

• Let K be the matrix whose columns represent the elements
ξ(T,ej)(1 ≤ j ≤ n − 1). K can be written in the form:

K =





In−1

KT





• Each column of K belongs to the orthogonal complement of the
cycle-subspace so KtC = 0. So Kt

T + CT = 0 and

KT = (D−1
T DN )t
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Application to electric networks (1)

• An electrical network is a connected graph Γ.

• The current and voltage vectors, w and z specify the physical
characteristics of the network. These vectors belong to the edge-space.

• If M is a diagonal matrix whose entries are the conductances of the edges
and n represents the externally applied voltages, then z = Mw + n.

• Kirchhoff’s laws:
Dw = 0, Ctz = 0

• w and z can also be partitioned:

w =





wT

wN



 , z =





zT

zN




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Application to electric networks (2)

• Dw = 0 gives DT wT + DNwN = 0 and since CT = −D−1
T DN :

wT = CT wN and w = CwN

• So all the entries of the current vector are determined by the entries
corresponding to edges not in T .

• Substituting in z = Mw + n and premultiplying by Ct:

(CtMC)wN = −Ctn

• CtMC is invertible so this equation determines wN and consequently
both w and z.
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