
Graph G: 
- vertex set V(G) 
- edge set E(G) 
- incidence relation: a subset of V(G) x E(G) 

(every edge is incident with either one or two vertices) 
 
Strict graph: every edge is incident with two vertices and no two edges are incident with the 
same pair of vertices. 
 
Degree of a vertex v: number of edges incident with v: deg(v) 
 
Subgraph <S>G: choose a subset S of E(G) together with all the vertices in G incident with edges 
in S. 
 
Induced subgraph <U>G: choose a subset U of V(G) together with all the edges in G incident 
only with vertices in U. 
 



Given G, |V(G)| = n, the adjacency matrix of G is the n x n matrix A (considered over the 
complex field) with: 
 
          1, if vi and vj are adjacent 
aij =  
          0, otherwise 
 
A is a real symmetric matrix, tr(A) = 0. 
 
We want to be vertex labeling independent, so are interested in properties of A invariant under 
permutations of rows and columns. In particular, spectral properties: 
 
characteristic polynomial of A, det(λI - A), is preserved by rows and columns permutations.



A is real and symmetric, so all the roots of the characteristic polynomial are real, so all of them 
are real eigenvalues of A: 
 
if λi is a root of det(λI - A), then there exists xi:  Axi = λi xi
 
Diagonalization:  A` = B-1AB, where B is orthogonal, A` is diagonal. 
 
What we have on the diagonal of A`: all the characteristic roots, with their multiplicities. 
 
Multiplicity of λi as a root of det(λI - A) is equal to the dimension of the eigenspace 
corresponding to λi. 
 
The spectrum of G: set of the eigenvalues of A(G), with their multiplicities: 
 
λ0  ≥  λ1  ≥  … ≥  λn-1,  or 
 
λ0      >     λ1   > … >     λs-1
 
m(λ0)     m(λ1)             m(λs-1) 
 
Sometimes it is easy to compute spectra directly: Kn, Kn,m, … 



The characteristic polynomial of G: 
 
χ(G, λ) = det(λI - A) = λn + c1 λn-1 + c2 λn-2 + … + cn
 
Proposition 1 
 

(1) c1 = 0; 
(2) – c2 = |E(G)| 
(3) – c3  = 2 #(triangles in G) 

 
Thus, we see that χ(G, λ) contains valuable graphical information. 



Adjacency algebra A(G): 
 
algebra of polynomials in A with complex coefficients, under the standard matrix operations. 
 
The Cayley-Hamilton theorem gives us: 
 
χ(G, A(G)) = 0 
 
So, dimA(G) ≤ n. 
 
Every element of A(G) is a linear combination of powers of A, so let’s take a closer look at those 
matrices. 



A walk of length l in G between vi and vj: 
 
vi = u0, u1, …, ul = vj, 
 
where ut-1 and ut are adjacent for t = 1, ..., l. 
 
Lemma 2 
 
The number of walks of length l in G from vi to vj is Al

(ij). 
 
(Straightforward induction.) 



G is connected: 
 
every pair of vertices is connected by a walk. 
 
Distance between vi and vj is the length of the shortest walk connecting them. 
 
For a connected graph G, the maximum distance between its vertices is called the diameter of G. 
Will denote it d(G) or simply d. 
 
Proposition 3 
 
Let G be a connected graph with adjacency algebra A(G) and diameter d. Then 
dim(A(G)) ≥  d + 1. 



If G has s distinct eigenvalues, then its minimum polynomial µ  has degree s. 
(Consider the corresponding diagonal matrix.) 
 
Then, by virtue of the previous proposition, we have: 
 
d + 1 ≤  dim(A(G)) ≤  deg(µ) = s. 
 
So, we obtained a lower bound on the number of distinct eigenvalues of a connected graph. 



Reduction formula for χ(G, λ): 
 
Assume deg(v1) = 1 (v1 is a leaf), and v2 is the vertex adjacent to v1. Let G1 be the induced 
subgraph on G \ {v1}, and G12 the induced subgraph on G \ {v1, v2}. Then: 
 
χ(G, λ) = λ χ(G1, λ)  –  χ(G12, λ) 
 
This can be used for computing characteristic polynomial of any tree. 
 
For Pn, the path graph on n > 2 vertices, we have: 
 
χ(Pn, λ) = λ χ(Pn-1, λ)  –  χ(Pn-2, λ) 
 
Thus, χ(Pn, λ) = Un (λ/2), where Un is the Chebyshev polynomial of the second kind. 



The spectrum of a bipartite graph is always symmetric with respect to 0. 



Cospectral graphs: non-isomorphic graphs with the same characteristic polynomial. 
(Predictably, characteristic polynomials do not contain all the graphical information.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



By Lemma 2, the total number of closed walks of length l is equal to tr(Al), that is, the sum of 
the eigenvalues of Al. 
 
tr(Al) = ∑ λi

l

 
Then we immediately have that the sum of the squares of the eigenvalues is twice the number of 
edges, and the sum of cubes is six times the number of triangles. 
 
This can be used from upper bounding the eigenvalues. 
 
Let |V(G)| = n, |E(G)| = m. 
 
We know that   ∑ λi = 0   and   ∑ λi

2
 = 2m. Using the quadratic vs. arithmetic means inequality, 

we obtain for the largest eigenvalue λ0: 
 
λ0   ≤  (2m (n – 1) / n)1/2



Regular graphs. 
 
G is k-regular if deg(v) = k for any vertex v of G. 
 
Proposition 4 
 
If G is k-regular, then 
 

(1) k is an eigenvalue of G; 
(2) if G is connected, then the multiplicity of k is 1; 
(3) for any other eigenvalue λ, we have |λ| ≤ k. 

 



Let J denote the all 1’s matrix. If A is the adjacency matrix of a k-regular graph, we have 
 
AJ = JA = kJ 
 
Proposition 5 
 
The matrix J belongs to the adjacency algebra A(G)  iff  G is a regular connected graph. 
 
Corollary 6 
 
Let G be a k-regular connected graph with n vertices, and let the distinct eigenvalues of G be 
k > λ1  > … >  λs-1. Then if  q(λ) = ∏ (λ – λi), over i = 1, …, s-1, we have 
 
J = (n / q(k)) q(A). 



Another special type of graphs: circulant graphs. 
 
We call an n x n matrix S circulant if 
 
sij = s1, j-i+1 (mod n)
 
(Row i is obtained from the first row by a cyclic shift of (i – 1) steps, S is fully determined by its 
first row.) 
 
Denote by W the circulant matrix with the first row [0, 1, 0, …, 0]. 
 
We want to show that any circulant matrix S can be expressed as a linear combination of powers 
of W. 



Note that for any matrix X, (XW)ij = Xi,j-1, so multiplying by W shifts every row of X cyclically 
to the right by one step. 
 
W2 is given by [0, 0, 1, 0, …, 0], and so on. 
 
Thus, we can express S as: 
 
S = ∑ si Wi-1, i = 1, …, n 
 
since both of them are circulant and with the same first row. 



Eigenvalues of W are the n-th roots of unity: 1, ω, ω2, …, ωn-1, where  ω = exp(2πi/n). 
(We know λn = 1, and for any ωr, we can set x1 = 1 and compute/construct the entire 
eigenvector.) 
 
It immediately gives us that the eigenvalues of S are: 
 
λr = ∑ si ωr(i-1),  i = 1, …, n 
 
where r = 0, …, n-1. 
 
(Any eigenvector x of W is also an eigenvector of S.) 
 
Thus, if G is a circulant graph with the first row of A being [0, a2, …, an], the eigenvalues of G 
are: 
 
λr = ∑ ai ωr(i-1),  i = 2, …, n 
 
Some of these expressions may be equal, so multiplicities may be greater than 1. 



Examples of circulant graphs: 
 

(1) Kn: [0, 1, …, 1] 
(2) Cycle graphs Cn: [0, 1, 0, …0, 1] 
(3) Hyperoctahedral graphs Hs, obtained by removing s disjoint edges from K2s: 

[0, 1, …, 1, 0, 1, …, 1] (zeros are in the first and (s+1)st positions) 
 



Line graphs. 
 
Given G, we construct its line graph L(G) by taking the edges of G as vertices of L(G), and 
joining two vertices in L(G) whenever the corresponding edges in G are incident. 



Let V(G) = {v1, …, vn}, and E(G) = {e1, …, em}. 
 
We define “almost incidence” matrix X(G), n x m, as follows: 
 
           1, if vi and ej are incident 
Xij =  
           0, otherwise 
 
Lemma 7 
 
Let A denote the adjacency matrix of G and AL the adjacency matrix of L(G). Then: 

(1) XTX = AL + 2Im; 
(2) If G is k-regular, then XXT = A + kIn. 

 
(Just write down what (XTX)ij and (XXT)ij are.) 



Proposition 8 
 
All eigenvalues of a line graph are not less than –2. 
 
(XTX is non-negative definite, so all its eigenvalues are non-negative, and we use the result of 
part (1) of Lemma 7.) 
 
There are graphs, which are not line graphs, but all their eigenvalues are not less than –2. 
 
There is a complete characterization of the graphs whose all eigenvalues are not less than –2. 



If G is k-regular, then its line graph L(G) is (2k – 2)-regular, an obvious connection between the 
maximum eigenvalues. In fact, there is a simple connection between the entire spectra of G and 
L(G). 
 
Theorem 9 
 
If G is k-regular, |V(G)| = n, |E(G)| = m = nk/2, then we have 
 
χ(L(G), λ) = (λ + 2)m-n χ(G, λ + 2 – k) 
 
So, we see that for L(G), (–2) has multiplicity (m – n) and eigenvalues (k – 2 + λi) correspond to 
eigenvalues λi of G, with the same multiplicities. 
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