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Overview

e Short review of recent electric network models

e Model of electric networks with arbitrary resistors
e Markov chains for such networks

e [nterpretation of voltage

e Interpretation of current
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Review

e Random Walks and harmonic functions in one and two dimensions
e Uniqueness and Maximum Principle in one and two dimensions

e Four ways of finding the harmonic function (= solution to the Dirichlet
problem):

Monte Carlo method
Method of relaxations
Linear equations
Markov chains

=W

— So far, the model for electric networks only considered unit resistor values!
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Network Model

— Rather than considering the resistor values R,,, their reciprocal, the
conductance Cy,, is used.

— We consider an electric network to be a connected, weighted, undirected graph.
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Random Walk (:= Markov chain Model)

Definition: We define a random walk on a graph G modeling a resistor network
to be a Markov chain with transition probabilities P,,:

Cy
Cﬂ?

@\i@
T

Pry =
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Terminology

Definition: A Markov chain in which it is possible to reach every state from any
other state is called ergodic.

Lemma: For an ergodic Markov chain, there is a unique probability vector w
that is a fixed vector for P (left eigenvector with eigenvalue 1), i.e. it holds that
wP = w. For our random walk on the resistor network:

wxz% C:Z(Jx

Definition: An ergodic Markov chain for which the following holds is called
reversible:

Wy * Ppy = wy x Py
Lemma: If P is any reversible ergodic Markov chain, then P is the transition
matrix for a random walk on an electric network with Cp, := w, * Py,,.

Special case: Vz,y : Cyy i=c (simple random walk)
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Probabilistic Interpretation of Voltage (1/3)

o Let G be a network of resistors. Like before, we associate a voltage v, to each
node x and a current i, to each edge (z,y). Let v, =1 and v, = 0.

e The following two laws are valid for “real” voltage and current and therefore
have to be considered here, too:

Ohm’s Law: S
loy = xR ? = (2 — Vy)Cry = loy = —lya
Ty
Kirchhoff’s Law:
— Uy = v, = Voltage v, is harmonic over all points  # a, b

— C’x
Yy
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Probabilistic Interpretation of Voltage (2/3)

Proof:
Ohm & Kirchhoff =

évxzzccéyvy — Znyvy x #a,b
Y

= v, harmonic for P (Pv, = v,) for all x # a, b
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Probabilistic Interpretation of Voltage (3/3)

e Let h, be the probability that starting at state x, the Markov chain/the random
walker given by P (recall: P, := CC—“;‘J) reaches first state a before reaching b.

e Then h, harmonic at all points x # a,b, v, = h, =1 and v, = hy, = 0.

e Modifying P to P by defining a and b to be absorbing states it follows by
the uniqueness principle that h, = v, and both are solutions to the Dirichlet
problem.
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Probabilistic Interpretation of Current (1/2)

e Naive idea: Assume that (electrically charged) particles enter the network at
point/node a and traverse edges until they eventually reach point b and leave
the network.

e Following the course of a single particle, we regard the current ¢,, to be the
expected number of edge traversals x — y (reverse traversals are negatives).

e The particle/random walker starts at a and keeps going in the event it returns
to this point.
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Probabilistic Interpretation of Current (2/2)

o Let u, be the expected number of visits to state x before stating state b. Then
one can show (using the reversibility of P and u, = > u,P,z):

’U,x_ uy_
C—x—ZnyC—y—vx
Yy

Yy

The last equation holds because the left side function is harmonic for = # a, b
and has the same boundary values as v,.
e Ohm's law implies:
Loy = UgPry — Uy Pyy
e However, the current i,, is only proportional to the current flowing when a
unit voltage is applied — the currents ,, have to be normalized such that

>y fay = Do, iy = 1.
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Effective Resistance / Escape Probability (1/2)

Vq
Reff = 7,_
RoRs
= R+ +R
! Ry + R3 !
B 1
Cery

Let v, = 1 and let p.s. be the probability that
the random walker starting at a reaches b before
returning to a. Then:

C
Pesc = 5£f
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Proof:

= 1q

= pesc

Escape Probability (2/2)

1

gy

= g for v, =1

= > (1-vy)Cay =) Cay— nyCayCa
C
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End

Thank you for your attention. . .

e <Questions? / Discussion>
o <Break>

o <Exercises>
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