Problems to sections 6 and 7 of “Algebraic Graph Theory” by N. Biggs

1. [page 42, problem 6a]
 If \(\Gamma \) is a connected \(k \)-regular graph with \(n \) vertices, show using Corollary 6.5 and the arithmetic-geometric mean inequality:
 \[
 \kappa(\Gamma) \leq \frac{1}{n} \left(\frac{nk}{n-1} \right)^{n-1}
 \]
 with equality if and only if \(\Gamma = K_n \).

2. [page 49, problem 7b]
 The characteristic polynomial of a tree: Suppose that \(\sum c_i \lambda^{n-i} \) is the characteristic polynomial of a tree with \(n \) vertices. Show that the odd coefficients \(c_{2r+1} \) are zero, and the even coefficients \(c_{2r} \) are given by the rule that \((-1)^r c_{2r} \) is the number of ways of choosing \(r \) disjoint edges in the tree.

3. [first part of page 49, problem 7d]
 The \(\sigma \) function of a star graph: A star graph is a complete bipartite graph \(K_{1,b} \). For such a graph we can calculate \(\sigma \) explicitly from the formula of Theorem 7.5. Show that
 \[
 \sigma(K_{1,b}\mu) = \mu(\mu - b - 1)(\mu - 1)^{b-1}
 \]

4. Let \(K_{n,m} \) be the complete bipartite graph (cmp. problems to sections 2 and 3). Calculate the number of elementary subgraphs of \(K_{n,m} \).