MAC Layer Key Hierarchies and Establishment Procedures

Jukka Valkonen

jukka.valkonen@tkk.fi

17.11.2006
Agenda

1. Introduction and Background
2. Pair-wise associations
3. Group associations
4. Different layers
5. Conclusions
Introduction

- Key negotiation methods and hierarchies based on standards
- WiMedia’s UWB
 - Short range radio platform
 - Speeds up to 480 Mbit/s
 - For example Wireless USB
- WLAN
 - Set of standards
 - Speeds up to 540 Mbit/s (802.11n)
Key exchange in different layers

- MAC-layer
 - For example the standards in the paper
- Upper layers
 - For example MANA-protocols
- Keys need to be distributed between the levels

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer</td>
</tr>
<tr>
<td>Presentation Layer</td>
</tr>
<tr>
<td>Session Layer</td>
</tr>
<tr>
<td>Transport Layer</td>
</tr>
<tr>
<td>Network Layer</td>
</tr>
<tr>
<td>MAC Layer</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
</tbody>
</table>
Pair-wise keys

- Both standards use a pre-shared key (PSK)
 - Also known as pair-wise master key (PMK)
- Devices exchange random nonces using a 4-way handshake
- Keys are derived from the PMK and random nonces
 - Also information such as addresses are used
UWB 4-way handshake (1/2)

- Initiator and Responder
- PMK is identified by master key identifier (MKID)
- PTK is identified by temporal key identifier (TKID)
 - Unique at the moment
- Devices exchange fresh random nonces
- After the devices have exchanged the data, the derive the keys using pseudo-random function
 - Pair-wise temporal key (PTK)
 - Key confirmation key (KCK)
UWB 4-way handshake (2/2)

Initiator

PMK

Generate I-Nonce

(MKID, TKID, I-Nonce)

Responder

PMK

Generate R-Nonce

prf(PMK | I-Nonce | R-Nonce)

(R-Nonce, PTK-MIC\textsubscript{KCK})

prf(PMK | I-Nonce | R-Nonce)

(I-Nonce, PTK-MIC\textsubscript{KCK})

(R-Nonce, PTK-MIC\textsubscript{KCK})
WLAN 4-way handshake (1/2)

- Authenticator and Supplicant

- Associations can be built between two stations or between a station and an access point
 - Ad-hoc or infrastructure mode

- Devices share pair-wise master key security association (PMKSA) identified using PMKID

- From known and exchanged material devices derive three keys: Key confirmation key (KCK), key encryption key (KEK) and temporal key (TK)
WLAN 4-way handshake (2/2)

Authenticator

PSK

Generate A-Nonce

(PMKID, A-Nonce)

Supplicant

PSK

Generate S-Nonce

prf(PSK | A-Nonce | S-Nonce)

(S-Nonce, MIC\(_{KCK}\))

prf(PSK | I-Nonce | R-Nonce)

(A-Nonce, MIC\(_{KCK}\), E\(_{KEK}\)(GTK))

(MIC\(_{KCK}\))
What about groups?

- Both standards provide means to negotiate multicast groups
- Groups are built using pair-wise associations
- Groups are unidirectional
 - Same key is never used for encryption and decryption
 - A device distributes the key it uses for encryption, the recipients save the key to use for decryption
Distribution of group keys

- **UWB**
 - Devices exchange group keys after the handshake is performed
 - Possible to exchange keys using one association

- **WLAN**
 - Devices send the group key in the third message of the handshake
 - To exchange key to both directions, two associations must be built
 - Also provides so called Group Key handshake
Key hierarchies

<table>
<thead>
<tr>
<th>Key Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair-wise master key (long term)</td>
</tr>
<tr>
<td>Pair-wise temporal key (short term)</td>
</tr>
<tr>
<td>PTK</td>
</tr>
<tr>
<td>[Group master key (short term)]</td>
</tr>
<tr>
<td>Group temporal key (short term)</td>
</tr>
</tbody>
</table>
Negotiation of PMKs

- The PSK can be negotiated using upper layer protocols

1. Authenticated DH

2. DHKey (PSK)

2. DHKey (PSK)

3. 4-way handshake
Forming groups on upper layers

- WLAN in ad-hoc mode or UWB

- Make devices share same PSK
 - Devices use the same PSK to derive the pair-wise keys
 - The PSK identifies the group
 * An attacker is not able to force devices to belong to a group without them knowing
 - Each device possessing the key can take new members
 - Only devices having the same key can join the group
Distribution of the group PSK (1/5)
Distribution of the group PSK (2/5)
Distribution of the group PSK (3/5)
Distribution of the group PSK (4/5)

17.11.2006 Jukka Valkonen
Distribution of the group PSK (5/5)

MAC

Group Initiator

Secure message
Issues

• Revoking a device
 – All devices (are able to) know all secrets
 – New associations must be built in the upper levels

• What if we use pair-wise associations on the upper level?
Group Keys using pair-wise associations

Group Key Distribution System

Authenticated DH

MAC

PSK

PSK

PSK

PSK

Upper
Revoking a device

Upper

MAC

PSK

PSK

PSK

New Shared PSK
Conclusions

- Group key negotiation has its problems
- The standards don’t provide perfect forward secrecy
- The methods seem to be appropriate for deriving session keys
Thank You!

Questions?