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Abstract

This survey is predominantly based on the paper
written by M. Naor, G. Segev and A. Smith [1].
The message authentication problem is examined
here in manual channel model where the sender
and receiver are connected by an insecure chan-
nel and by a low-bandwidth auxiliary channel, that
enables the sender to “manually” authenticate one
short message to the receiver. This model is con-
sidered in information-theoretic setting where no
computational assumptions are made. It will be
claimed that for any 0 < ǫ < 1 there exists a log∗ n-
round protocol for authenticating n-bit messages,
in which only 2 log(1/ǫ) + O(1) bits are manually
authenticated, and proved that any adversary has
probability of at most ǫ to cheat the receiver into
accepting a fraudulent message.

1 Introduction

Message authentication is a security service for a
message receiver to verify whether a message is
from a specified legitimate source, even in the pres-
ence of an adversary who controls the communica-
tion channel. Research on the field has been go-
ing on already more than three decades and thus
many message authentication protocols have been
suggested and throughoutly investigated. Security
level of these protocols is determined based on the
adversary’s computing power.

Security that holds when the adversary is com-
putationally unbounded is called unconditional se-

curity or information-theoretic security. If restric-
tions are made to the adversary’s computing power
then security that holds in that case is called com-

putational security. Information-theoretic security
will be in central concern in this survey, because
it allows exact evaluation of the error probabili-
ties. On the other hand we will be able to calculate
growth rates and lower bounds for the model pa-
rameters as functions on exact error probabilities.

Manual channel model got the formal treatment
in the literature by Vaudenay [2] in 2005. In this
model the sender and the receiver are connected by
a bidirectional insecure channel, and by a unidirec-
tional low-bandwidth auxiliary channel, but do not
share any secret information. The low-bandwidth
auxiliary channel enables the sender to “manually”
authenticate one short string to the receiver. For
example, the sender can type a short string and
send it to receiver through the auxiliary channel.
It is assumed that the adversary can read any mes-
sage sent over the auxiliary channel, prevent it from
being delivered, and insert a new message at any
point in time. However, the adversary cannot mod-
ify the message sent over this channel.

The rest of the paper is organized as follows. Sec-
tion 2 gives a detailed description of the protocol
in manual channel model and Section 3 states few
theoretical results and makes close analysis of the
proofs.

2 A message authentication

protocol

The notation used in this survey is the follow-
ing. By GF[Q] we denote the Galois field with
Q elements and by m = m1 . . .mk ∈ GF[Q]k a
message. With x ∈R GF[Q] is denoted that ele-
ment x is chosen uniformly at random from GF[Q].
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For x ∈ GF[Q] let Cx(m) =
∑k

i=1 mix
i that is

a message parsed a polynomial of degree k over
GF[Q] without the constant term, and evaluated
at the point x. Now it holds that for any two dif-
ferent messages m, m̂ ∈ GF[Q]k and for any ele-
ment c, ĉ ∈ GF[Q] the polynomials Cx(m) + c and
Cx(m̂) + ĉ are also different. This follows from the
observation that since the messages are different
then are also coefficients different in polynomials (c
can be equal to ĉ but that cannot make the poly-
nomials the same).

Even though the polynomials are different they
can map a certain number of points to the same
point. Therefore Prx∈RGF[Q][Cx(m)+ c = Cx(m̂)+
ĉ] can be greater than 1/Q, and upper bounding
this probability for future reference makes sense
since we will use C(·) as a hash function to re-
duce the length of the message. By the funda-
mental theorem of algebra we know that a poly-
nomial P (x) of degree d has d values xi (some of
them possibly degenerate) for which P (xi) = 0.
Let us write P (x) = Cx(m) − Cx(m̂) + c − ĉ then
deg(P (x)) = k where it follows that max{|{x :
P (x) = 0}|} = k. There are Q elements in GF[Q]
and thus Prx∈RGF[Q][Cx(m) + c = Cx(m̂) + ĉ] =

Prx∈RGF[Q][P (x) = 0] ≤ k
Q

.
Now we will construct a protocol for manual

channel model. Protocol Pk is the k-round pro-
tocol which applies a sequence of hash functions
C1, . . . , Ck−1 during its execution in order to ob-
tain a shorter and shorter message for manual au-
thentication. Defining parameters for the proto-
col are n which is the length of the input message,
e which is the adversary’s forgery probability and
each Cj (j = 1, . . . , k − 1) parses nj-bit strings to
polynomials over GF[Q], where n1 = n. Moreover
each Qj is chosen such that,

2k−jnj

ǫ
≤ Qj <

2k−j+1nj

ǫ
(1)

and for the next round,

nj+1 = ⌈2 log Qj⌉. (2)

For analysis purposes we still need to make differ-
ence between strings x that are sent by sender (S)
or by receiver (R) and the strings x̂ that are ac-
tually received by other party. This is because the
adversary can replace any string sent by any one of
parties over the insecure channel. In the protocol

addition and multiplication are operations of the
Galois field GF[Q] and 〈u, v〉 denotes the concate-
nation of the strings u and v. Protocol is described
in Figure 1.
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Figure 1: The k-round authentication protocol for
manual channel model. First two strings (m1

S and
i1
S
) can be sent together, and therefore the protocol

requires only k rounds of communication. The first
and the second round are different, though the only
difference is that the roles of the sender and the
receiver are changed. We can see that if S and
R are interchanged in the second round then it is
analogical with the first round (after m1

S
is sent).

Rounds after the second round until k−1:th round
are analogical with the first or the second round
depending on is the number of round odd or even.
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If for all input messages m, whenever there is
no interference by the adversary in the execution,
the receiver accepts m with probability 1 then the
authentication protocol is said to be perfectly com-

plete. With this protocol that is clearly the case.
If there is no interference by the adversary, that is
m1

R
= m1

S
and for all j, 1 ≤ j ≤ k − 1, hold that

îj
R

= ij
R

and îj
S

= ij
S

then mj+1
R

= mj+1
S

which
leads to mk

R
= mk

S
and that means that the re-

ceiver accepts.
Note that an important property in this setting

is that the parties will each be able to choose the
Qj ’s in deterministic way and after the Qj is cho-
sen then representations of GF[Qj ] can also be get
in deterministic way. Remember that the order of
of a Galois field completely specifies the field. This
avoids us to explicitly specify these parameters in
the description of the protocol which could cause
security problems (see an example from [3]). One
possible solution is to choose Qj as the smallest
prime number in the interval (1) (assuming that it
exists always). For the Galois field of order p which
is prime we know that we can construct GF[p] using
the integers {1, 2, . . . , p−1} and modulo p addition
and multiplication. The representation of the field
element in bits then can be just a binary represen-
tation of the integer.

3 Analysis of the protocol

In this section we prove that a computationally un-
bounded adversary has probability of at most ǫ
to cheat the receiver into accepting a fraudulent
message in the protocol Pk. We also examine the
proof that for any integer k ≥ 3, and any inte-
ger n and 0 < ǫ < 1, the protocol Pk enables the
sender to authenticate an n-bit input message to
the receiver, while manually authenticating at most
2 log(1/ǫ) + 2 log(k−1) n + O(1) bits.

Lemma 3.1 Any computationally unbounded ad-

versary has probability of at most ǫ to cheat the

receiver into accepting a fraudulent message in pro-

tocol Pk.

Proof. Let us assume an execution of the pro-
tocol Pk in which an adversary cheats the receiver
into accepting a fraudulent message, then it corre-
sponds to situation where the receiver gets a mes-
sage m1

R
which is different than the message that

was sent by the sender m1
S

but the receiver checks
in the end that mk

S
= mk

R
and accepts the message

m1
R. Then it must be that during the rounds from

1 to k − 1 at some round j, mj
S
6= mj

R
, but on the

next round, mj+1
S

= mj+1
R

. We denote this event
by Dj . Other notation used in this proof is the fol-
lowing. For any variable y that occurs during this
execution let T (y) be the moment of time at which
the variable y is fixed. Time moments T (x1) and
T (x2) occur in time such that either T (x1) < T (x2)
or T (x1) ≥ T (x2) which means that either x1 is
fixed before x2 or x1 is fixed at the same time or
later than x2.

In [1] is given a more practical example where
T (ij

R
) denotes the time in which R sent ij

R
and

T (̂ij
R

) denotes the time in which S received from

the adversary îj
R

corresponding to ij
R

. However,

now the comparison of times when choosing of ij
R

and îj
R

occurred is not exact based on T (ij
R

) and

T (̂ij
R

) if no assumption of delays on transmission
or channel are made. For clarity, I consider here
T (ij

R
) denote the time when ij

R
was chosen by the

receiver and T (̂ij
R

) denotes the time when îj
R

was
chosen by the adversary.

Structure of mj+1
S

= 〈̂ij
R

, Cj

bi
j

R

(mj
S
) + ij

S
〉 and

mj+1
R

= 〈ij
R

, Cj

i
j

R

(mj
R

) + îj
S
〉 on the odd round

and structure of mj+1
S

= 〈ij
S
, Cj

i
j

S

(mj
S
) + îj

R
〉 and

mj+1
R

= 〈̂ij
S
, Cj

bi
j

S

(mj
R

) + ij
R
〉 on the even round and

assumption that mj
S
6= mj

R
shows that the wanted

probability Pr[Dj ] can depend only on parameters

ij
S
, îj

S
, ij

R
and îj

R
. Adversary’s act must be then

targeted to îj
S

and îj
R

. For probability calculation
the thing that makes difference is then to know did
adversary choose the values of îj

S
and îj

R
before or

not before the sender or the receiver choosed values
ij
S

and ij
R

.

If j is odd then event Dj can occur only if

ij
R

= îj
R

and Cj

bi
j

R

(mj
S
) + ij

S
= Cj

i
j

R

(mj
R

) + îj
S
. We

have four possibilities to consider, either îj
R

was

chosen before ij
R

or it was not chosen before and

either îj
S

was chosen before ij
S

or it was not cho-
sen before. Obviously these four cases gather the
all possible cases and only one of them can actu-
ally occur. Closer analysis reveals that in the case
T (̂ij

R
) < T (ij

R
) the probability Pr[Dj] is not depen-
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dent on whether the îj
S

was chosen before ij
S

or not.

From the protocol follows that T (̂ij
S
) < T (ij

R
) and

T (ij
S
) < T (̂ij

R
) and these together with T (̂ij

R
) <

T (ij
R

) gives that T (ij
S
) < T (ij

R
), T (̂ij

S
) < T (ij

R
)

and T (̂ij
R

) < T (ij
R

). That means all other param-

eters are fixed at the time when ij
R

is chosen. Now
we have three cases to analyse:

1. T (̂ij
R

) < T (ij
R

). The last event in time that sets

Pr[Dj ] is now the receiver choose ij
R

∈R GF[Qj ]

and at that time ij
S
, îj

S
and îj

R
are already set.

Therefore we get,

Pr[Dj ] = Pr
i
j

R
∈RGF[Qj ]

[mj+1
S

= mj+1
R

]

= Pr
i
j

R
∈RGF[Qj ]

[ij
R

= îj
R
∧

Cj

bi
j

R

(mj
S
) + ij

S
= Cj

i
j

R

(mj
R

) + îj
S
]

≤ Pr
i
j

R
∈RGF[Qj ]

[ij
R

= îj
R

]

=
1

Qj

≤
ǫ

2k−j · nj

≤
ǫ

2k−j
, (3)

where the last row is get by using (1) and nj ≥ 1.

2. T (̂ij
R

) ≥ T (ij
R

) and T (̂ij
S
) ≥ T (ij

S
). Now the ad-

versary chooses îj
R

not before the receiver chooses

ij
R

and that is why we have to assume something

about îj
R

. As was mentioned earlier, Dj can occur

only if ij
R

= îj
R

when j is odd. Thus we assume that

the adversary chooses îj
R

= ij
R

. From the protocol

it follows that T (̂ij
S
) < T (ij

R
) and T (mj

S
) < T (ij

S
)

and T (mj
R

) < T (ij
R

). From this it follows that,

T (mj
S
) < T (ij

S
) ≤ T (̂ij

S
) < T (ij

R
). Now we know

that mj
R

, mj
S
, ij

S
and îj

S
are fixed before ij

R
is cho-

sen.

The other requirement for Dj to occur was for

polynomials over Galois field Cj

bi
j

R

(mj
S
) + ij

S
=

Cj

i
j

R

(mj
R

) + îj
S

and we assumed in the beginning

that mj
S
6= mj

R
. Then no choice of ij

R
and îj

S
can

make the polynomials as functions of ij
R

the same.
In general polynomials over some field are defined
to be the same if for all elements x in the field their
values are the same. In this case the reader may
check as an algebraic exercise that mj

S
6= mj

R
im-

plies the fact that no choice of ij
S

and îj
S

can make

the polynomials as functions of ij
R

the same. This

gives now,

Pr[Dj ] = Pr
i
j

R
∈RGF[Qj ]

[mj+1
S

= mj+1
R

]

= Pr
i
j

R
∈RGF[Qj ]

[ij
R

= îj
R
∧

Cj

bi
j

R

(mj
S
) + ij

S
= Cj

i
j

R

(mj
R

) + îj
S
]

≤ Pr
i
j

R
∈RGF[Qj ]

[Cj

bi
j

R

(mj
S
) + ij

S
=

Cj

i
j

R

(mj
R

) + îj
S
| îj

R
= ij

R
]

= Pr
i
j

R
∈RGF[Qj ]

[Cj

i
j

R

(mj
S
) + ij

S
=

Cj

i
j

R

(mj
R

) + îj
S
]

≤
1

Qj

⌈ nj

log Qj

⌉
≤

ǫ

2k−j
, (4)

where the last row follows from observation that,

Cj

i
j

R

(mj
S
) + ij

S
= Cj

i
j

R

(mj
R

) + îj
S

Cj

i
j

R

(mj
S
) − Cj

i
j

R

(mj
R

) + ij
S
− îj

S
= 0, (5)

which is the polynomial over GF[Qj ] and for that
we know that the number of roots is at most de-
gree of that polynomial. By calculating the degree
we must remember that mj

S
and mj

R
are nj-bit

strings. Now the question is how many elements
of the GF[Qj ] nj long bit string can represent at
most. Entropy of nj-long bit string is nj and en-
tropy of a field element is log Qj then the degree
of the polynomial (5) is ⌈nj/ log Qj⌉. Obviously
⌈nj/ logQj⌉ ≤ nj since nj ≥ 1 and then from (1)
follows Qj ≥ 2.

3. T (̂ij
R

) ≥ T (ij
R

) and T (̂ij
S
) < T (ij

S
). Also in this

case from the protocol follows that T (mj
S
) < T (ij

S
)

and T (mj
R

) < T (ij
R

) and we can again assume that

the adversary chooses îj
R

= ij
R

. Based on the pro-

tocol we know that T (̂ij
S
) < T (ij

R
) and T (ij

S
) <

T (̂ij
R

), and this case assumed that T (̂ij
S
) < T (ij

S
)

and T (ij
R

) ≤ T (̂ij
R

). These imply that,

T (̂ij
S
) < T (ij

R
) ≤ T (̂ij

R
),

T (̂ij
S
) < T (ij

S
) < T (̂ij

R
). (6)

This allows us to make assumption that T (ij
R

) <

T (ij
S
). (We can see that when this assumption is

made then from (6) follows stricter limit T (ij
R

) <

T (̂ij
R

). This however can be accepted since we are

anyways assuming that the adversary chooses îj
R

=
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ij
R

and then it is irrelevant when does that happen.)

Now putting everything together we have mj
S
, mj

R
,

îj
S

and ij
R

fixed before the sender chooses ij
S

∈R

GF[Qj ]. Thus,

Pr[Dj ] = Pr
i
j

S
∈RGF[Qj ][m

j+1
S

= mj+1
R

]

= Pr
i
j

S
∈RGF[Qj ][i

j
R

= îj
R
∧

Cj

bi
j

R

(mj
S
) + ij

S
= Cj

i
j

R

(mj
R

) + îj
S
]

≤ Pr
i
j

S
∈RGF[Qj ][i

j
S

=

Cj

i
j

R

(mj
R

) + îj
S
− Cj

bi
j

R

(mj
S
)]

=
1

Qj

≤
ǫ

2k−j
. (7)

The case if j is even is identical to the case when j
is odd if we interchange S and R. Therefore we can
consider that it is also covered now. To conclude
this proof we sum the probability of event Dj for
all j and get the adversary’s cheating probability
that is,

k−1∑

j=1

Pr[Dj ] ≤

k−1∑

j=1

ǫ

2k−j
< ǫ. (8)

�

Next will be shown that the length nj+1 of mj+1
S

and mj+1
R

in round j is roughly logarithmic in the

length nj of mj
S

and mj
R

in round j − 1. This fact
is then used to upper bound the length nk of the
manually authenticated string.

Claim 1 If nj > 2k−j

ǫ
for every 1 ≤ j ≤ k − 2,

then nk−1 ≤ max{4 log(k−2) n1 + 4 log 5 + 3, 27}.

Proof. This will be shown by induction on k.

Assume for every j, 1 ≤ j ≤ k − 2, nj > 2k−j

ǫ
and

by using (1) we get,

Qj <
2k−j+1 · nj

2

=
2 · 2k−j · nj

ǫ

< 2n2
j , (9)

and thus,

nj+1 = ⌈2 logQj⌉ ≤ ⌈2 log 2n2
j⌉

= ⌈2(log n2
j + log 2)⌉

= ⌈4 lognj + 2⌉

≤ 4 lognj + 3. (10)
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Figure 2: Saturation of 4 log x + 3 as function of
the number of nestings (n1 = 1000).

Now for k = 3 we have n2 ≤ 4 log n1 + 3 and
the claim holds. Figure 2. shows the evolution of
the upper bound in the equation (10) as j grows.
Quickly it saturates to the value which is approxi-
mately 20.4. Therefore, it is guaranteed that if k is
large enough the claim holds since clearly 20 < 27.
For smaller values of k the other option of the upper
bound guarantees that the claim holds.

Let us now assume that the claim holds for k′

then we have two cases to consider either nk′−1 ≤

27 or nk′−1 ≤ 4 log(k′
−2) n1 + 4 log 5 + 3. In addi-

tion for this induction step we have to assume that

nk′−1 > 2(k′+1)−(k′
−1)

ǫ
= 4

ǫ
which justifies the use of

equation (10) for j = k′ − 1. Then if nk′−1 ≤ 27,

nk′ ≤ 4 lognk′−1 + 3 ≤ 4 log 27 + 3 ≈ 22.02 < 27.
(11)

If nk′−1 ≤ 4 log(k′
−2) n1 + 4 log 5 + 3, then

nk′ ≤ 4 log nk′−1 + 3 (12)

≤ 4 log(4 log(k′
−2) n1 + 4 log 5 + 3) + 3,

and this leaves us with two cases to check, either

log(k′
−2) n1 ≤ 4 log 5+3 or log(k′

−2) n1 > 4 log 5+3.
The first condition implies that

nk′ ≤ 4 log(20 log 5 + 15) + 3 ≈ 26.76 < 27 (13)

and the second condition that

nk′ < 4 log(5 log(k′
−2) n1) + 3

= 4 log(k′
−1) n1 + 4 log 5 + 3. (14)

That is the claim holds also for k = k′ + 1. �
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With the help of the Claim 1 can be proved [1]
the following claim.

Claim 2 In protocol Pk the sender manually au-

thenticates at most 2 log(1/ǫ) + 2 log(k−1) n + O(1)
bits.

From the Claim 2 follows the result which was
mentioned in the beginning that for any integer
k ≥ 3, and any integer n and 0 < ǫ < 1, the proto-
col Pk enables the sender to authenticate an n-bit
input message to the receiver, while manually au-
thenticating at most 2 log(1/ǫ)+2 log(k−1) n+O(1)
bits. If k = log∗ n (∗ refers to that when nesting
of logarithm is done enough many times then the
term 2 log(k−1) n = O(1)) then manually authenti-
cated bits are at most 2 log(1/ǫ) + O(1) which was
mentioned in the abstract.

4 Conclusions

In this survey was introduced a protocol in manual
channel model for which any adversary has proba-
bility of at most ǫ to cheat the receiver into accept-
ing a fraudulent message. For this protocol with
any 0 < ǫ < 1 there exists a log∗ n-round pro-
tocol for authenticating n-bit messages, in which
only 2 log(1/ǫ) + O(1) bits are manually authenti-
cated [1]. The related work is done by S. Laur and
K. Nyberg in [4] and A. Mashatan and D. Stin-
son in [5]. For example in [4] can be found an in-
teresting and important theoretical result that two
round message authentication protocols are inher-
ently less secure than the message authentication
protocols with three or more rounds.
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