
Analysing Security Protocols with AVISPA

Laura Takkinen
Helsinki University of Technology
Laura.Takkinen@tkk.fi

Abstract

Usage of the Internet has increased rapidly over the past
decade. Increased amount of network users has also brought
along a need of network-based services that require secu-
rity. Developing new security protocols is a difficult task and
sometimes too difficult task for human mind. We need an ef-
ficient tools to help the development and verification of the
protocols. In this paper we introduce the protocol analysis
tool called AVISPA. The paper describes the architecture of
the tool and syntax for protocol specification language called
HLPSL. We give an example of how a real protocol can be
specified with the HLPSL language and how the output of
the AVISPA Tool is analysed.

KEYWORDS: protocol analyzer, AVISPA

1 Introduction

Usage of the Internet has increased dramatically over the past
decade. Increased amount of network users has also brought
along a need of network-based services that require security.
Developing new security protocols is a difficult task. Design-
ing protocols is error prone and finding possible vulnerabili-
ties from the protocols is sometimes too difficult for human
mind. This is a serious problem for standardization organi-
zations such as the Internet Engineering Task Force (IETF),
the International Telecommunication Union (ITU) and the
World Wide Web Consortium, but also for several compa-
nies that whose business depends on rapid standardization
and correctness of the standardized security protocols [6].

To make the development of the protocols faster and to im-
prove their security, it is important to have appropriate tools
that support the analysis of the protocols and help to find the
vulnerabilities in early stages of development. [6].

Security protocols can be seen as a mathematical objects
that require tools that use methods of mathematics and logic
to perform analysis [4]. In this paper we present a push-
button tool for formal analysis of security protocols, Auto-
mated Validation of Internet Security Protocols and Applica-
tions (AVISPA).

The rest of the paper is organized as follows: Section 2
introduces the AVISPA tool, its architecture and syntax for
presenting security protocols. Section 3 shows an example
of how real protocol can be analysed with AVISPA. Finally
there are conclusions.

2 AVISPA

Automated Validation of Internet Security Protocols and Ap-
plications (AVISPA) is a push-button tool for building and
analysing security protocols. In this section we introduce the
tool and the principals it is based on. AVISPA provides a
role-based, expressive formal language for protocol specifi-
cation and it integrates four different back-ends, which per-
form the actual analysis of the protocol. We begin the dis-
cussion by presenting the architechture of the tool and then
show the syntax of the formal language. Finally we briefly
show the four back-ends that AVISPA uses.

2.1 Architecture

The archtecture of AVISPA is shown in figure 2.1. First step
in using the tool is to present the analyzed protocol in a spe-
cial language called High Level Protocol Specification Lan-
guage (HLPSL). We discuss the HLPSL language more de-
tailed in following section 2.2.

Figure 1: The architecture of the AVISPA tool [6].

The HLPSL presentation of the protocol is translated
into the lower level language called Intermediate Format
(IF). This translations is performed by the translator called
HLPSL2IF. This step is totally transparent to the user.

IF presentation of the protocol is used as an input to
the four different back-ends: On-the-fly Model-Checker
(OFMC), CL-based Attack Searcher (CL-AtSe), SAT-based
Model-Checker (SATMC) and Tree-Automata-based Proto-
col Analyzer (TA4SP). These back-ends perform the analy-
sis and output the results in precisely defined output format
stating whether there are problems in the protocol or not.

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

2.2 High Lavel Protocol Specification Lan-
guage

AVISPA uses High Level Protocol Specification Language
(HLPSL) to present the analysed protocols. In this section
we take a closer look into the structure of HLPSL language
according to the AVISPA tutorial [5].

In order to express the protocols in HLPSL language, it
is easiest to translate the protocols firts into A-B format, for
instance:

A -> S: {Kab}_Kas
S -> B: {Kab}_Kbs

The notation above illustrates Wide Mouth Frog (WMF)
protocol, where endpoints A and B setup a secure session.
First A generates a new session key Kab, encrypts it by us-
ing a key Kas and transmits the encrypted key to the trusted
server S. Kas is a key that is shared between A and S. S de-
crypts the message, re-encrypts it by using a shared key Kbs
and transmits the encrypted message to the B. B can decrypt
the message by using the shared secret Kbs and obtains the
session key Kab.

HLPSL language is a role-based language, which means
that actions of each participant are defined in a separate mod-
ule, called a basic role. In the case of WMF example above,
the basic roles are: alice (A), bob (B) and server (S).
Basic roles describe what information the corresponding par-
ticipant has initially (parameters), its initial state and how the
state can change (transitions). To continue the WMF exam-
ple, the role of alicewould be expressed in following way:

role alice(A,B,S : agent,
Kas : symmetric_key,
SND, RCV : channel (dy))

played_by A def=
local
State: nat,
Kab: symmetric_key

init State := 0
transition

...
end role

The role indicates that agents A, B and S are participating
to the procol suite, A has a shared key Kas with the agent S
and A uses channels SND (send) and RCV (receive) to com-
munication. Dolev-Yao (dy) is the the intruder model that
is assumend for the communication channel. Section called
local defines the local variables of alice, which are State
that is described by a natural number (na) and symmetric key
Kab. Initial state of the alice is 0.

Transition section describes received and sended mes-
sages and how they affect the state of the role. For instance
the role server has following transition called step1:

step1. State = 0 /\ RCV({Kab’}_Kas) =|>
State’:= 2 /\ SND({Kab’}_Kbs)

The transition means that if the server’s state is 0 and it
receives a message from its RCV channel containing a key
Kab’ that is encrypted with a key Kas, the server changes

its state to 2, encrypts the key Kab’ with the Kbs and sends
the encrypted key to the channel SND.

In addition to basic roles the HLPSL language defines also
so called composition roles that are used to combine several
basic roles. Combining the basic roles means that the roles
can execute parallel. Composition roles define the actual
protocol sessions. For instance, in the case of WMF protocol
there are three basic roles alice, bob and server. Composition
role, called session, initiates one instance of each role and
thus defines one protocol run. Composition role does not
define transitions such as basic roles do, instead they initi-
ate basic roles and defines channels used by the basic roles.
Composition role is defined for instance following way:

role session(A,B,S :agent,
Kas,Kbs :symmetric_key) def=

local SA, RA, SB, RB SS, RS: channel (dy)
composition

alice (A, B, S, Kas, SA, RA)
/\ bob (B, A, S, Kbs, SB, RB)
/\ server(S, A, B, Kas, Kbs, SS, RS)
end role

Finally the HLPSL defines a top level role, called here
as environment, that contains global variables and com-
bines several sessions. This top level role can be used to de-
fine what information an intruder has and where the intruder
can access the protocol. For example, the intruder may play
a role of a legitimate user in a protocol run. Following role
definition shows how a top level environment can be de-
fined. Letter i in the definition indicates the intruder.

role environment()
def=

const a, b, s : agent,
kas, kbs, kis : symmetric_key

intruder_knowledge = {a, b, s, kis}

composition
session(a,b,s,kas,kbs)

/\ session(a,i,s,kas,kis)
/\ session(i,b,s,kis,kbs)

end role

Every security protocol has some goals which it is sup-
posed to meet. In order to write the protocol in HLPSL for-
mat, we must know these goals. The analysis is done against
the defined security goals and results indicate whether the
protocol meets the goals or not.

Security goals of the protocol are presented in HLPSL lan-
guage in section called goals. Security goals are actually de-
fined in transition sections of basic roles. The definitions of
security goals in transition section are called goal facts. The
goals section simply describes which combinations of these
goal facts indicate an attack. [6].

Below there is an example of a goal fact textttsecret. The
notation means that bob allows that the key K1 can be shared
with alice, but it must remain secret between the two. The

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

second argument of the secret fact is called protocol id
and it simply names the secret fact and distinguish the differ-
ent secrurity goals from each other.

role bob {
...

local
State : nat,
Nb,Na : text,
K1 : message

init
State := 1

transition
1. State = 1 /\ RCV({Na’}_K) =|>

State’:= 3 /\ Nb’ := new()
/\ SND({Nb’}_K)
/\ K1’:= Hash(Na’.Nb’)
/\ secret(K1’,k1,{A,B})

...
end role

A goal section of the protocol definition can be as follows:

goal
secrecy_of k1
authentication_on bob_alice_nb

end goal

The first statement describer the goal fact above and the
second statement describes another goal fact that was not
included in the example. We do not show the syntax in
transition section for this secrurity goal. However, this
statement is used to indicate the authentication. Notation
bob_alice_nb is simply used to name the corresponding
goal facts in transition sections of basic roles.

2.3 Back-ends
As figure 2.1 shows AVISPA integrates four different back-
ends. Here the word back-end means an entity that inputs
a sequence of IF language, does analysis and produces the
analysis output.

The four different back-ends used in AVISPA, OFMC,
CL-AtSe, SATMC and TA4SP, are complementary rather
that equivalent. Thus, the output of the back-ends may differ.

All back-ends assume perfect cryptography, which means
that attacker cannot solve ecryption without the knowledge
of the whole key. Also, the tranmission channel is assumed
to be controlled by a Dolev-Yao attacker. This means, that
the attacker has basically full control over the channel. [6]

3 Case Study: IKEv2
The AVISPA project [3] provides a library of known pro-
tocols. The AVISPA tool has been evaluated by running it
against the library of 33 known protocols. During the eval-
uation, the tool detected a number of previously unknown
attacks on some of these protocols. One of the protocols was

Internet Key Exchange Protocol version 2 (IKEv2) with dig-
ital signatures [2].

In this section we give an example of how the protocol is
build and analyzed with the tool. We use the IKEv2 protocol
in this example.

3.1 IKEv2 with digital signatures
The IKEv2 protocol variat we are using here proceeds
in two so-called exchanges. These exchanges are called
IKE_SA_INIT and IKE_SA_AUTH. These two exchanges
consist of four messages. The first pair of messages
(IKE_SA_INIT) negotiate cryptographic algorithms, ex-
change nonces, and do a Diffie-Hellman exchange. The sec-
ond pair (IKE_SA_AUTH) authenticate the first two mes-
sages, exchange identities and certificates, finally establish
the first so-called "child security association" or CHILD_SA.
This association is the one that will be used to secure the sub-
sequent IPsec tunnel. [2]

Parts of the IKE_SA_AUTH messages are encrypted
and integrity protected with keys established through the
IKE_SA_INIT exchange, so the identities are hidden from
eavesdroppers and all fields in all the messages are authenti-
cated.

Below is shown the A-B notation of the IKEv2 authenti-
cation protocol [3]:

IKE_SA_INIT
1. A -> B: SAa1, KEa, Na
2. B -> A: SAb1, KEb, Nb
IKE_SA_AUTH
3. A -> B: {A, AUTHa, SAa2}K

where K = H(Na.Nb.SAa1.g^KEa^KEb) and
AUTHa = {SAa1.g^KEa.Na.Nb}inv(Ka)

4. B -> A: {B, AUTHb, SAb2}K
where
AUTHb = {SAb1.g^KEb.Na.Nb}inv(Kb)

In IKE_SA_INIT phase peers exchange nonce values Na
and Nb, Diffie-Hellman keys KEa and KEb. In addition,
SAa1 contains A’s cryptosuite offers and SAb1 B’s prefer-
ence for the establishment of the IKE_SA. Similarly SAa2
and SAb2 for the establishment of the CHILD_SA [3].

After the A-B notation, the protocol is more easier to con-
vert to HLPSL format. Appendix 1 shows the HLPSL spec-
ification as a whole for the protocol. In this example we use
AVISPA Web Tool [1] to perform analysis remotely. Fig-
ure 3.1 shows a front page of the Web Tool. Local HLPSL
files can easily be imported to the Web Tool. In this figure
IKEv2 HLPSL file has been imported and the tool is ready
for analysis.

Analysis results show that the protocol security goals are
not met. Output of the OFMC back-end includes following
attack trace:

ATTACK TRACE
i -> (a,6): start
(a,6) -> i: SA1(1).exp(g,DHX(1)).Ni(1)
i -> (b,3): SA1(1).exp(g,DHX(1)).Ni(1)
(b,3) -> i: SA1(1).exp(g,DHY(2)).Nr(2)
i -> (a,6): SA1(1).exp(g,DHY(2)).Nr(2)

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

Figure 2: AVISPA Web Tool

(a,6) -> i: {a.{SA1(1).exp(g,DHX(1))
.Ni(1).Nr(2)}_inv(ka).SA2(3)}_
(f(Ni(1).Nr(2).SA1(1)
.exp(exp(g,DHY(2)),DHX(1))))

i -> (b,3): {a.{SA1(1).exp(g,DHX(1))
.Ni(1).Nr(2)}_inv(ka).SA2(3)}_
(f(Ni(1).Nr(2).SA1(1)
.exp(exp(g,DHX(1)),DHY(2))))

(b,3) -> i: {b.{SA1(1).exp(g,DHY(2))
.Nr(2).Ni(1)}_inv(kb).SA2(3)}_
(f(Ni(1).Nr(2).SA1(1)
.exp(exp(g,DHX(1)),DHY(2))))

In the attack trace i stands for intruder and a and b cor-
respond alice and bob endpoints. The number in notation
(a,6) is a session number related to the internal workings
of the HLPSL2IF translator and the AVISPA back-ends.

The attack trace describes a man-in-the-middle attack
where intruder initiates an association with alice but for-
wards the messages to the bob. Endpoint alice thinks that
it has an assiociation with intruder and does not know that
she is actually participating an association with bob.

Attack traces can also be viewed more readable format,
Message Sequence Chart (MSC) format. Figure 3.1 shows a
same attack trace presented in MSC chart.

Figure 3: Man-in-the-middle attack presented in MCS chart.
[1]

4 Conclusions
This paper introduces the AVISPA protocol analysis tool
with the help of an use case of IKEv2. AVISPA provides a
powerfull specification language, HLPSL, for protocols and
integrates four different back-ends that perform the actual
protocol analysis.

The AVISPA Tool is quite promising tool for formal pro-
tocol analysis. Although it requires deep knowledge of the
analyzed protocols, afterall mistakes in the HLPSL specifi-
cation of the protocol may cause that the back-ends cannot
analyze the protocol or the output may give wrong results.
The tool is also quite diffucult to use. Basically a user has to
learn a new programming language in order to use the tool.
Also the analysing of the output and possible attack trace is
time consuming.

References
[1] AVISPA Project. AVISPA Web Tool. At

http://www.avispa-project.org/
web-interface/.

[2] C. Kaufman, Ed. Internet Key Exchange (IKEv2) Pro-
tocol. RFC 4306, Internet Engineering Task Force, De-
cember 2005.

[3] A. Project. AVISPA Automated Validation of Inter-
net Security Protocols and Applications. At http:
//www.avispa-project.org.

[4] Sebastian Mödersheim and Luca Vigano and David von
Oheimb. Automated Validation of Security Protocols
(AVASP). Lecture slides, April 2005.

[5] The AVISPA team. HLPSL Tutorial The Beginner’s
Guide to Modelling and Analysing Internet Security
Protocols. Technical report, AVISPA project, June 2006.

[6] L. Vigano. Automated Security Protocol Analysis With
the AVISPA Tool. Electronic Notes in Theoretical Com-
puter Science, (155):62–86, 2006.

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

A HLPSL Specification for IKEv2 Protocol

role alice(A,B:agent,
G: text,
F: hash_func,
Ka,Kb: public_key,
SND_B, RCV_B: channel (dy))

played_by A
def=

local Ni, SA1, SA2, DHX: text,
Nr: text,
KEr: message, %% more specific: exp(text,text)
SK: hash(text.text.text.message),
State: nat

const sec_a_SK : protocol_id

init State := 0

transition

%% The IKE_SA_INIT exchange:
%% We have abstracted away from the negotiation of cryptographic
%% parameters. Alice sends a nonce SAi1, which is meant to
%% model Alice sending only a single crypto-suite offer. Bob must
%% then respond with the same nonce.
1. State = 0 /\ RCV_B(start) =|>

State’:= 2 /\ SA1’ := new()
/\ DHX’ := new()
/\ Ni’ := new()
/\ SND_B(SA1’.exp(G,DHX’).Ni’)

%% Alice receives message 2 of IKE_SA_INIT, checks that Bob has
%% indeed sent the same nonce in SAr1, and then sends the first
%% message of IKE_AUTH.
%% As authentication Data, she signs her first message and Bob’s nonce.
2. State = 2 /\ RCV_B(SA1.KEr’.Nr’) =|>

State’:= 4 /\ SA2’ := new()
/\ SK’ := F(Ni.Nr’.SA1.exp(KEr’,DHX))
/\ SND_B({A.{SA1.exp(G,DHX).Ni.Nr’}_(inv(Ka)).SA2’}_SK’)
/\ witness(A,B,sk2,F(Ni.Nr’.SA1.exp(KEr’,DHX)))

3. State = 4 /\ RCV_B({B.{SA1.KEr.Nr.Ni}_(inv(Kb)).SA2}_SK) =|>
State’:= 9 /\ secret(SK,sec_a_SK,{A,B})

/\ request(A,B,sk1,SK)

end role

role bob (B,A:agent,
G: text,
F: hash_func,
Kb, Ka: public_key,
SND_A, RCV_A: channel (dy))

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

played_by B
def=

local Ni, SA1, SA2: text,
Nr, DHY: text,
SK: hash(text.text.text.message),
KEi: message,
State: nat

const sec_b_SK : protocol_id

init State := 1

transition

1. State = 1 /\ RCV_A(SA1’.KEi’.Ni’) =|>
State’:= 3 /\ DHY’ := new()

/\ Nr’ := new()
/\ SND_A(SA1’.exp(G,DHY’).Nr’)
/\ SK’ := F(Ni’.Nr’.SA1’.exp(KEi’,DHY’))
/\ witness(B,A,sk1,F(Ni’.Nr’.SA1’.exp(KEi’,DHY’)))

2. State = 3 /\ RCV_A({A.{SA1.KEi.Ni.Nr}_(inv(Ka)).SA2’}_SK) =|>
State’:= 9 /\ SND_A({B.{SA1.exp(G,DHY).Nr.Ni}_(inv(Kb)).SA2’}_SK)

/\ secret(SK,sec_b_SK,{A,B})
/\ request(B,A,sk2,SK)

end role

role session(A, B: agent,
Ka, Kb: public_key,
G: text,
F: hash_func)

def=

local SA, RA, SB, RB: channel (dy)

composition
alice(A,B,G,F,Ka,Kb,SA,RA)

/\ bob(B,A,G,F,Kb,Ka,SB,RB)

end role

role environment()
def=

const sk1,sk2 : protocol_id,
a, b : agent,
ka, kb, ki : public_key,
g : text,
f : hash_func

intruder_knowledge = {g,f,a,b,ka,kb,i,ki,inv(ki)

}

TKK T-110.7290 Research Seminar on Network Security 2006-12-1

composition

session(a,b,ka,kb,g,f)
/\ session(a,i,ka,ki,g,f)
/\ session(i,b,ki,kb,g,f)

end role

goal

%secrecy_of SK
secrecy_of sec_a_SK, sec_b_SK % Addresses G9

%Alice authenticates Bob on sk1
authentication_on sk1 % Addresses G1, G2, G3, G7, G10
%Bob authenticates Alice on sk2
authentication_on sk2 % Addresses G1, G2, G3, G7, G10

end goal

environment()

