Key Management in IP Multicast

Petri Jokela
Helsinki University of Technology

petri.jokela@nomadiclab.com

ABSTRACT

The IP networking was originally designed to operate in point-to-
point way. However, when the same data is delivered to multiple
receivers unicast is not very efficient because the data is
multiplied already at the original source. In the late 1980's, first
data transmission protocol was introduced that provided data
multiplication in the routers optimizing the amount of data.
During 1990's, when the success story of the Internet began, the
need for security emerged also in multicast. Since then work on
different security issues have been going on, related to source and
receiver host authentication, data integrity and encryption. This
paper describes the current status of the multicast key
management work in the IETF, discusses missing features, and
proposes an enhancement to an existing protocol.

LINTRODUCTION
1.1 Multicast technology

IP networks were originally designed to deliver data between
two nodes connected to the network. This model of transferring
data is not optimal when the same data is transferred from one
source to multiple recipients. When unicast is used, the source
has to open a unicast connection to each of the recipients. The
same data will be transmitted multiple times over the same links.

In late 1980's, this problem was tackled with a new proposal;
IP multicast [2][1]. This proposal defined a method to deliver
data from multiple sources to all hosts that were willing to
receive the same data, allowing also data to be multiplied closer
to the destination hosts. This saves considerable amounts of
network resources, especially when the number of receivers is
high.

The introduced Any Source Multicast (ASM) system didn't
give any possibility to control the source of the data, thus anyone
could send data to the same multicast group (i.e. to a specific
multicast IP address defining a group). The Source Specific
Multicast (SSM) [6] protocol was introduced to give a solution to
this problem; the data channel is identified using both the
destination multicast address and the source IP address of the
data packet. Basically only one node could send to the multicast
channel.

The described SSM is not a bullet-proof system. An attacker
can fake the source address of an IP packet and use the IP address
of the real source node's address instead of its own. Now these
packets can be injected in the transmission and they are delivered
to the receivers who are unable to verify if the sending node is
the correct one.

The SAM Research Group in the Internet Research Task
Force (IRTF) is currently working on research issues related to

multicast development. The IP multicast has not become a very
popular technology even though there seems to be a need for
multicast applications. There are, not necessarily only technical,
problems to get all IP routers to support multicast traffic. If all
routers do not support multicast, it cannot be used in cases when
the traffic should cross this area not supporting multicast. SAM
RG is trying to find solutions to these kinds of problems. There
are ideas presented that propose application and overlay multicast
systems, as well as hybrid models where multicast is partly
handled by IP multicast and partly by other, higher layer
solutions.

1.2 Multicast security issues

While the number of Internet users have grown, it has also
pushed the work on IP security. The security consists of
authenticating the multicast stream source node, providing
integrity protection for data, and providing secrecy for data.

One solution provided by Internet Engineering Task force
(IETF) for the source node authentication is the Timed Efficient
Stream Loss-Tolerant Authentication (TESLA) [12] protocol. In
TESLA, the receiver can authenticate each packet's source node
and verify the integrity of the data.

The data has to be protected against modifications while it is
transferred. Even though the data can be plain text and readable
by others, the receiver has to be sure that the data is not modified
during transmission.

If the nature of the data is such that it must not be revealed
to parties not allowed to see it, it has to be encrypted. This data
secrecy is one part of security considered in multicast.

Setting up security associations between two nodes is easy,
and there exists multiple protocols that can be used to do this.
However, when multicast transmission is protected, it is not
feasible to build separate security associations between each of
the receivers and the source node. In this case the properties of
multicast technology could not be used, but all data would be
delivered using unicast connections. New methods for building
multicast security associations are required and the IETF
Multicast Security (MSEC) working group (WG) has been
working on these issues.

With current point-to-point key generation methods, it is not
either possible or efficient enough to create a shared group key
for associations where multiple parties are participating. Thus
other methods are needed to manage keying in multicast
environment; each host allowed to access the data has to receive
proper cryptographic keys and the mechanism has to be flexible
enough to serve even millions of nodes and to remove and add
users when they leave or join a certain multicast session. The
currently used method to distribute keys is to use a centralized

control point for handling client access and key management.
This entity is called the Group Control Key Server (GCKS).

The nature of multicast applications vary and depending on
their nature different security protocols may be needed and they
may be used in different ways. Multicast groups can be short-
lived or long-lived with either stable set of clients or all the time
changing set of receiving members. Groups can be large or small.
The actual data may have different kinds of requirements for
protection. For example a multicast sending from a sports event
doesn't necessarily suffer if it can be viewed a short time without
encryption, but the same cannot happen in a multicasted
corporate meeting session.

Security for data transmission can be provided on different
layers, e.g. on application layer. In this document, however, we
concentrate on IP layer security.

2. MULTICAST SECURITY ARCH
2.1 History

Multicast technologies have been under standardization
since late 1980's in the Internet Engineering Task Force (IETF).
During the years new standards have been introduced and the
work has been going on developing more efficient and secure
solutions.

In 1996, RFC1949, "Scalable Multicast Key Distribution"
defined the first IETF standardized version for multicast key
management. The basic assumptions were that unicast keying
mechanisms cannot be used; each of the receivers cannot
negotiate a security association with the source node individually.
Thus the decision was to select only one security association that
is shared with all participants.

Currently there are few working groups creating multicast
related standards; the PIM Working Group (WG) is developing IP
multicast data transmission technologies, the RMT WG has focus
on reliable multicast transmission protocols and the MSEC WG
concentrates on security issues in multicast technology. In
addition, SAM Research Group in the Internet Research Task
Force (IRTF) is working on more research oriented protocols for
trying to find new solutions that would help deployment of
multicast also in cases when IP multicast is not supported
everywhere.

The initial goal of the MSEC WG was to provide a security
architecture for multicast, define group key and policy
management architectures, as well as to specify protocols for
source origin authentication, group key management, and group
policy management. The first target is to create such protocols for
sessions with single source and a large number of recipients.
Future work will include other types of sessions.

2.2 Security Architecture

In IETF the multicast security architecture is based on a
centralized function for providing both the source and receiver
nodes authentication and authorization as well as the distribution
of the required keying material. Introducing functions that are
separated from the source node and providing the possibility to
distribute these functions provide a scalable environment for
authentication, authorization and key management.

Multicast
Security Policy Server
Policies @<—>

A
Group Key Group Control / »_| Group Control /
Management Key Server ' "1 Key Server

A
Receiver

4

Multicast Sender Receiver

Data Handling

Figure 1: Distributed Multicast Security Reference
Framework

In [4] the current high level architecture for multicast
security is introduced. The basic architecture consists of few
different functions; Policy Server (PS), Group Control (GC) and
Key Server (KS), receiver, and sender. The PS as well as GCKS
functions may be distributed to achieve more efficient operation
in the multicast key handling. Figure 1 shows the model with
distributed PS and GCKS entities.

The architecture specification defines three different areas:
multicast data handling, group key management, and multicast
security policies.

The data handling covers the data encryption and source
origin authentication and integrity (or possibly only group
authentication with the restriction that if integrity is required all
group members have to be trusted.)

The multicast security policies is responsible for creating
and managing the policies specific for a certain multicast group.
The PS, implementing the required functionality, interacts with
the GCKS entity.

In group key management area the GCKS handles functions
related to end-host authentication and key management. The end-
host may be either the receiver or sender in the multicast group.
The two functions in this entity are not necessarily implemented
in the same place. End-hosts are authenticated and authorized by
the GC function, and they both have to interact with the KS for
receiving initial keys as well as new keys when re-keying for the
group is necessary.

The security architecture is further developed in [5]. The
specification defines the framework for registration protocol used
between end-hosts and GCKS, re-key protocol used for managing
keys at end-hosts, and a Group Security Association (GSA)
defining the data security properties between the sender and
receiver.

Policy Authorization
Infrastructure Infrastructure

‘ i
A
Registration / Registration /

deregistration deregistration
protocol GCKS rotocol

Re-key|protocol

‘ Receiver(s) ‘*ﬂ Sender(s) ‘

: i

Data security protocol

Figure 2: Group Security Association Model

Figure 2 shows the associations defined in [5]. The
registration association is established between the end-host and
the GCKS. Both receivers and senders have to register to the
GCKS. Using the registration association protocol the end-host is
registered as a participant in a multicast session. The GC function
both authenticates the end-user and verifies if it is authorized to
receiver the stream or to send to the stream. After positive
authorization, the KS can provide required keying information to
the host.

The re-keying association is used to provide new keying
information for the end-hosts. Re-keying may be done
periodically to avoid revealing too much information for an
attacker to do statistical analysis on keys, and in cases when there
are changes in the set of multicast receivers or senders.

Data security association is the one that is used to protect
transmitted data between the source and destination nodes. KS
defines the keys required for data protection, as well as the SPI
that must be used for this SA. The IPsec [18] specification
defines the issues that have to be handled at the IPsec client to
support ESP and AH for multicast.

The Group Security Association is the combination of all
security related parameters as well as needed keys for all three
types of security associations.

3. KEY MANAGEMENT PROTOCOLS

The protocols described in this section use the architecture
described in the previous section. All of these protocols have
been specified in the IETF and define a method for cryptographic
key management for multicast protocols.

These protocols do not define any data transmission related
protocols. They are defined in different specifications, like
Protocol Independent Multicast — Sparse Mode (PIM-SM) in
[11]. It is assumed that the multicast tree building happens after
the end-host authentication and authorization has been done and
initial GSA has been set up at the client side.

Multicast key management is currently being defined in
IETF MSEC working group. The original target of the WG was
to create protocols for systems that have single source and large

number of receivers. During the time the WG has existed, three
key management protocols have been defined. They are slightly
different from each other providing different properties and they
are targeted to be used in slightly different scenarios.

The GSAKMP protocol defines a protocol controlling
everything from policy management to re-keying. MIKEY
protocol has a slightly different target; it is designed to be used in
heterogeneous networks, providing more efficient ways for key
management than other defined protocols. The Group Domain of
Interpretation protocol uses the ISAKMP phase 1 negotiation as
the authentication protocol and for setting up a secure connection
between a receiver and the GC/KS system. The GDOI itself
defines the phase 2 messages.

3.1 Logical Key Hierarchy

One of the early multicasting architecture specification,
“Key Management for Multicast: Issues and Architectures”, [3],
was published in 1999. It describes early visions of the key
management architecture and defines also a Logical Key
Hiearchy (LKH) where Key Encryption Keys (KEK) are
organized in a hierarchical manner optimizing re-keying
operations. The document doesn't define a specific protocol for
key management, but it can be used together with the GSAKMP
and GDOI protocols, defined in the following subsections.

For new joining nodes, the key encryption would be most
efficient using just one level of key encryption keys. In a system
with n-1 clients all clients have the same KEK. When a new node
joins the group, the old KEK can be used to encrypt the new data
encryption key and it can be multicasted to the clients. For the
new node, the KEK is encrypted with the new node's own key.
Thus, for each joining node, the server has to do two encryption
operations and deliver two re-keying messages.

However, when a user leaves, the new KEK should be
encrypted individually to each of the remaining nodes, thus it had
to be done n-1 times and the number of messages transmitted to
the network would also be n-1. For example in case when a
multicast group contains a hundred thousand nodes, the number
of encryption operations and message transmissions would be
huge when compared to hierarchical models (see Table 1).

Figure 3: LKH model

The LKH model, as depicted in Figure 3, shows the keys in
the LKH hierarchical model. Each node u, has the traffic

encryption key TEK, and all keys that are on the path towards the
server S and a host based key encryption key, e.g. host u3
maintains TEK, k;, kj;, and k,;. When a node leaves from the
system, e.g. node uy, part of the keys need to be updated. First,
the TEK cannot be used any longer to protect data and also keys
known to the leaving node (k;, ki) have to be updated.

For nodes 5 — 8, the key k2 can be used to encrypt the new
TEK. Thus a single encryption and a single message is enough to
update that side of the graph. For nodes 1 and 2 the k;; can be
used to encrypt the new k; and TEK. For node 3, the k,; is used to
update TEK, k;, and kj,. After updates, node u4 has no access to
future key information.

Table 1 [RFC2627] shows the performance of the LKH
system in case of re-keying. The degree describes the height of
the hierarchy, storage the number of keys required to be stored by
a user, and re-key transmissions the number of messages that are
needed to be transmitted from the key server. The first (single)
assumes that each key is transmitted in separate messages, and
the second (multi) the case when multiple keys are packed into
one message.

Users | Degree | Storage Re-key Re-key
per user | transmissions | transmissions
(single) (multi)
8 2 4 5 3
9 3 3 5 4
16 2 5 7 4
2048 |2 12 21 11
2187 3 8 20 14
131072 |2 18 33 17
177147 |3 12 32 22

Table 1: Efficiency of LKH

3.2 Key Management Protocols

3.2.1 Group Security Association Key Management

Protocol (GSAKMP)

The GSAKMP [10] defines methods for policy distribution,
policy enforcement, key distribution, and key management. The
following roles are identified:

® Group owner (GO) — responsible for creating policies

® Group Controller / Key Server (GCKS) — responsible

for authenticating Group Members, enforcing policies,
distributing and managing keys

® S-GCKS - same responsibilities as GCKS in case the

functions of GCKS have been distributed

® Group Member (GM) — responsible for verifying that

all security related actions are authorized and to use
group keys properly.

There are three different configurations defined in the
GSAKMP: Only one GM is the sender (default), all GMs can
send (this function has to be supported in all implementations), or

a subset of GMs are senders (implementations can optionally
support this mode).

The GSAKMP supports distributed GCKS operations to
enhance scalability. Distributed operations can also provide better
GM management locally when the S-GCKS can be better aware
of the GMs that it can serve. This can be case e.g. in a corporate
network.

The assumption in GSAKMP is that there is one or more
trustworthy PKI (Public Key Infrastructure) for the group. The
PKI is used for creating and verifying security policy rules. The
GO public key must be known by all the GMs.

When a GO creates a new multicast group, it initiates the
process by creating a Policy Token (PT) describing the rules for
access control and authorizations for a group. The token is signed
by the GO. The token contains:

® Identification for the PT and group

® Access Control rules defining who can have access to

the group keys

® Authorization rules describing who can be a S-GC/KS

® Mechanisms for handling security. E.g. in IPsec this

could include configuration data for Security Policy
Database / Security Association Database

® Source authentication of the PT to the GO

Once the PT is created and signed, the GO will send it to the
GCKS. The GCKS verifies the signature of the PT and checks if
it is itself valid to act as a GCKS for this group based on the
information in the PT.

Controller

-

Member

Request To Join

Key Download

Key Download, Ack

Shared Keyed Group Session

e——

Figure 4: GM registration in GSAKMP

After the group has been formed, each GM registers with the
GCKS (see Figure 4). When the GCKS receives the request to
join the group it has to verify the signature of the GM for
determining its identity and the authorization information for
joining the group. Once these requirements are met, the GCKS
can send key download message to the GM. The GM in turn has
to verify that the GCKS is a valid key management party in this
group. Using the keying information received the GM can setup
required security associations for re-keying and data.

The negotiation is slightly different when the GM is not
going to send data to the group, but will act only as a receiver. In
that case there is no Request To Join message, but the Key
Download is pushed to the GM immediately after the registration
protocol has been run.

To support better scalability, the distributed operation of the
GCKS is supported. After joining the group, the GM may

become a S-GCKS, providing GCKS services locally if the
policy in the PT allows that and the GM is capable for this role.

Re-keying is needed when GMs join or leave. The re-keying
operation goes always via the GO. Each node change is sent to
the GO which creates a new PT. The new PT is distributed among
all GCKS nodes. When a GCKS or S-GCKS receives a new PT, it
must verify if there have been changes among its own GMs. If
not, the new PT is distributed as described in the LKH using a
group key. However, if there have been changes the new PT has to
be delivered for each of the clients using their host-based keys.

The re-keying operation requires that IP multicast tree for
data has been set up or that there exists some other method for
distributing the new keying information, such as an overlay
network.

3.2.2 Multimedia Internet Keying

MIKEY defines key management functions. The sender can
act also as the GCKS, so that a separate GCKS node is not
necessarily needed. The GC functionality, authenticating the user,
is done during an initial key exchange with signed messages.

The MIKEY protocol has been defined especially for real-
time applications. It can be used both for peer-to-peer
communication and group communication.

Requirements for protecting real-time data, transferred using
RTP, had been rising in IETF. To support the key management for
Secure RTP (SRTP), the MIKEY protocol was designed. This
protocol tries to provide a lower latency, better usage over
heterogeneous networks, and better performance for small
interactive groups.

For distributing traffic encryption keys, the MIKEY protocol
uses either pre-shared keys, public key encrypted key transfer, or
Diffie-Hellman (only for peer-to-peer connections).

Whe public key or pre-shared key method is used, the
Traffic Encryption Key Generation Key (TGK) is a shared
information between all hosts participating the session. In case of
Diffie-Hellman key sharing each client establishes a point-to-
point connection with the source (or separate GCKS node). In the
latter case, the TGK is different for each client — GCKS pair.

Authentication in MIKEY is based either on pre-
configuration, for example in case of pre-shared keys. Another
possibility is to use certificates signed by a trusted CA.

Re-keying in MIKEY is not actually defined and it is
defined that the MIKEY protocol is run again when re-keying is
needed. However, extensions have been done to MIKEY to allow
multicast re-keying in certain environments, e.g. in Multimedia
Broadcast / Multicast Service (MBMS) [17].

3.2.3 The Group Domain of Interpretation

The GDOI [RFC3547] specification describes a ISAKMP
[RFC2408] domain of interpretation for group key management.
The ISAKMP specification, however, has been obsoleted by
“Internet Key Exchange (IKEv2) Protocol” specification
[RFC4306], but in relation to GDOI, we still use the ISAKMP
specification terminology.

ISAKMP defines a two-phase negotiation for establishing
secure connections. The ISAKMP phase 1 negotiation (e.g. IKE
[1) defines security association creation between two nodes,
including end-host authentication. The GDOI is targeted to take
advantage of the ISAKMP phase 1 and leave the initial

authentication and secure connection setup for that protocol.
During the phase 1 the client host establishes a secure unicast
connection with the GC/KS and the phase 2 negotiation,
specified in GDOL, is run over this established secure connection.

The phase 1 negotiation establishes the so called registration
association between the end-host and the GCKS. In GDOI
specification the phase 2 negotiation is defined and during the
negotiation a re-key and/or data security associations are created.

The GC maintains authorization information and it may use
either the identity provided during the phase 1 negotiation, or a
separate identity information provided in a certificate during the
phase 2 negotiation. The certificate has to be provided by the
group owner.

Initiator Responder
(member) (GCKS)
HDR*, HASH(1), Ni, ID o
L HDR*, HASH(2), Nr, SA

HDR*, HASH(3), [KE_l], [CERT], [POP_I|

_, HDR*, HASH(4),[KE_R], [SEQ], KD,
[CERT], [POP_R]

Figure 5: GDOI GROUPKEY_PULL exchange

The GDOI specification specifies two formats of key
transmissions: GROUPKEY_PULL and GROUPKEY_PUSH.
The GROUPKEY_PULL is initiated by the client node and it is
used to retrieve the TEKs and/or KEK (or KEK array, if LKH is
used).

In Figure 5 the GROUPKEY_PULL message exchange is
shown. Messages one to three are used to provide a proof of
liveliness, and protect against replay attacks. HASHes include
nonce values provided by both the initiator and responder. In
message four, the actual keying information is transmitted in the
KD parameter.

The GROUPKEY_PUSH can be used by the GCKS to
update either the Re-key SA or the Data SA. This message
exchange is initiated by the GCKS and it forces the key update on
needed SAs.

Perfect forward secrecy is provided if the KE payload is
used. However, implementing it is optional.

4. HOST IDENTITY PROTOCOL
4.1 Host Identities

The Internet hosts have traditionally been identified using
the IP address. The problem with this identification is that the IP
address describes also the location of the host. This is a problem
for example when the end-host is mobile. A host changing the
location changes the IP address (locator) but the identity of the
host still remains the same and should not be changed.

In Host Identity Protocol [14] the location information is
separated from the host identity information by introducing a new
name space for host identities. Each host generates a public

private key pair for host identification purposes. The host identity
(HI) is the public key of the key pair.

To support existing APIs, a HIT is used as a representation
of the HI. The HIT is 128-bit hash of the HI. Actually, the HIT
contains (at HIP's experimental phase) a 28-bit prefix to separate
it from actual IPv6 addresses and a 100-bit hash over the HI.

The HIT can be given to applications that are resolving the
address information of a HIP host. The HI layer creates a
dynamic mapping between the HI of the peer host and its IP
address. Thus, when the application opens a socket towards the
peer node, it uses the HIT of the peer host. The HI layer is
responsible for mapping the HIT information in the packet to the
actual IP address information for routing purposes.

For IPv4 applications, a local scope identifier (LSI) is
introduced. This is, as the name says, only local scope and the
peer host is not using the same value. The LSI is a 32-bit long
value. The mapping on the HI layer is done similarly as in case of
HITs.

In addtion to the security, separation of locator and identity
information provides an easy way to handle mobility and
multihoming. While the upper layers do not see the IP address at
all and the association between the host identity and the IP
address is dynamic, the mapping can be easily changed when
hosts move and change IP addresses.

4.2 Base exchange

HIP defines a four-way handshake, a so called base exchange
(BEX). During the BEX hosts mutually authenticate themselves
using public key cryptography and generate keying material using
Diffie-Hellman method. The keying material can be used for
various purposes, for example to ESP Security Association to
protect data traffic between hosts.

In Figure 6, the HIP base exchange is presented. The roles of
the nodes are Initiator and Responder. The Initiator is the host
that sends the first HIP message, thus being the connection
initializer. The I1 message is basically just a hello message telling
that a HIP negotiation is requested. The packet is not signed nor
protected using any other means.

Initiator Responder

I1: HITi, HITr -

< R1: puzzle, D-H public value

12: Puzzle solution, D-H parameters, SPI -

R2: SPI

¢

ESP protected data

Figure 6: Host Identity Protocol: Base Exchange

The Responder will respond with an R1 packet. The packet
can be precalculated and sent directly to the Initiator. The packet

contains the Diffie-Hellman values for the Responder and a
puzzle that the Initiator has to solve before the negotiation can be
finalized. At this phase the responder doesn't create any state, it
can safely forget that someone has tried to initialize a HIP
negotiation. The puzzle is created so that at the verifciation phase
the Responder can get the needed information without storing too
much data.

The Initiator solves the puzzle, selects its own Diffie-
Hellman public value, creates an 12 packet and sends it to the
Responder. The Initiator has already the common keying material
and it could basically build the ESP SA already, except that the
SPI value for the Responder is still missing.

When the Responder receives the 12 packet, it verifies the
puzzle and checks the signature in the packet. If everything is ok,
it can create the ESP SA. It has to select its SPI value, which it
will insert in the created R2 packet and send to the Initiator.
Initiator, once it receives the R2 packet, finalizes the security
association.

R1 and 12 packets contain signatures that are used to verify
that the sender “owns” the public key (HI) that it has delivered.
Thus after the negotiation the hosts can be sure about the identity
of the peer host.

5. POSSIBLE IMPROVEMENTS

The current multicast keying methods are heavily tied to the
GCKS system. Currently there doesn't exist any suitable
negotiation for creating group keys between participants
especially when the number of participants is very large thus a
centralized method is needed for efficient operation.

The key management is based on shared keys which means
that a malicious node, participating in the communication could
inject data packets to the tree which are even correctly encrypted.
Spoofing the source address the SSM multicast tree would route
packets correctly to recipients.

Although the hierarchy in keys is logical, a mapping to
physical locations might provide benefits in optimizing the data
route. In such case, the node mobility should be taken into
account also in the key management, not only in data routing in
the multicast tree. When a client moves, it affects similarly as the
client would leave from the network and join in the new place; re-
keying should be done both on the old and on the new path.
However, this has not been considered in the current key
management systems.

The building of registration association has not been defined
well in the specifications. The GDOI, however, has specified that
the ISAKMP Phase 1 will be used, but others omit this definition.

6. USING HIP WITH GDOI

When a HIP host joins a GDOI key management system, the
host initializes a HIP BEX with the GCKS. During the
negotiation, the GCKS authenticates the client using public key
cryptography.

If needed, the 12 message can be added to contain the
certificate for authorization or authentication purposes if needed
by the system. Currently, the HIP base specification [14] specifies
the CERT parameter to be used for transmitting certificates, but
the usage of the parameter has not been defined.

Client GCI&

11 HITi, HITr -

- R1: puzzle, D-H public value, REG_INFO

12: Puzzle solution, D-H parameters, SPI, REG_RE&

- R2: SPI, REG_RESP

Encrypted: GROUPKEY_PULL exchange

- >

Figure 7: HIP Multicast Registration

In GDOI, it is defined that the GDOI information is
included in the Phase 1 negotiation. However, in HIP we can
define a new service for the Multicast GCKS. While the GCKS
provides this new service, the HIP service registration protocol
[15] can be used by the client to register as a user to this new
service.

In Figure 7 the registration related parameters have been
added to the BEX. In R1 the GCKS advertizes the multicast
GCKS service that it is providing. In 12 the client registers to the
GCKS with REG_REQ parameter included in the packet. The
parameter can contain e.g. the multicast channel that the client
want's to receive. The R2 finalizes the multicast GCKS service
registration.

After the BEX, hosts share a common keying material from
where they can retrieve keys when needed. From this material,
the SKEYID_a is retrieved to be wused in the GDOI
GROUPKEY_PULL and GROUPKEY_PUSH exchanges.

‘When the HIP node leaves the multicast session, it creates a
CLOSE message and sends it to the GCKS. After this the
registration association can be tore down and the GCKS can
initiate re-keying with other nodes.

4.7. FUTURE WORK

In this paper we described the current multicast keying
environment specified in the IETF. Three different key exchange
protocols have been defined currently, GSAKMP, MIKEY, and
GDOI. Each of these protocols have been designed for slightly
different target systems in mind.

We proposed to use the HIP as the registration protocol for
the GDOI protocol, providing host authentication, possible
authorization information in form of a certificate, and creation of
a security association (registration association) between the client
node and the multicast group control and key server function. In
addition to the GDOI, HIP could be used also for GSAKMP and
MIKEY protocols as the registration protocol. This requires some
work for determining all the required parameters that may have to
be included in HIP to support these protocols.

9. REFERENCES

[1] Deering, S., “Multicast Routing in a Datagram
Internetwork”, Ph.D. Thesis, Stanford University, 1991

[2] Deering, S., “Host Extensions for IP multicasting”,
RFCI1112, IETF, 1989

[3] Wallner, D., Harder, E., Agee, R., “Key Management for
Multicast: Issues and Architectures”, RFC2627, IETF, June
1999.

[4] Hardjono, T., Weis, B. “The Multicast Group Security
Architecture”, RFC3740, IETF, March 2004

[5] Baugher, M., Canetti, R., Dondeti, L., Lindholm, F.,
“Multicast Security (MSEC) Group Key Management
Architecture”, RFC4046, IETF, April 2005

[6] Holbrook, H., Cain, B., “Source-Specific Multicast for IP”,
RFC4607, IETF, August 2006

[7] Maughan, D, et. al., “Internet Security Association and Key
Management Protocol (ISAKMP)”, RFC2408, IETF,
November 1998

[8] Baugher, M., Weis, B., Hardjono, T., Harney, H., “The
Group Domain of Interpretation”, RFC3547, IETF, July
2003

[9] Arkko,J., et. al., “MIKEY: Multimedia Internet KEYing”,
RFC3830, IETF, August 2003

[10] Harney, H., Meth, U., Colegrove, A., “GSAKMP: Group
Secure Association Key Management Protocol”, RFC4535,
IETF, June 2006

[11] Fenner, B. et. al., “Protocol Independent Multicast — Sparse
Mode (PIM-SM): Protocol Specification (revised)”,
RFC4601, IETF, August 2006

[12] Perrig, A., et. al., “Timed Efficient Stream Loss-Tolerant
Authentication (TESLA): Multicast Source Authentication
Transform Introduction”, RFC4082, IETF, June 2005

[13] Kaufman, C. (editor), “Internet Key Exchange (IKEv2)
Protocol”, RFC4306, IETF, December 2006

[14] Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.,
“Host Identity Protocol”, Internet-Draft, <draft-ietf-hip-
base-06>, work in progress, IETF, June 2006

[15] Laganier, J., Koponen, T., Eggert, L., “Host Identity
Protocol (HIP) Registration Extension”, Internet-Draft,
<draft-ietf-hip-registration-02>, work in progress, IETF,
June 2006

[16] Jokela, P., Melén, J., Ylitalo, J., “HIP Service Discovery”,

Internet-Draft, <draft-jokela-hip-service-discovery-00>,
work in progress, IETF, June 2006

[17] “Security of Multimedia Broadcast / Multicast Service
(MBMS)”, technical specification TS 33.246, 3GPP,
September 2006

[18] Kent, S., Seo, K., “Security Architecture for the Internet
Protocol”, RFC4301, IETF, December 2005

[19] Ballardie, A., “Scalable Multicast Key Distribution”,
RFC1949, IETF, May 1996

	1.INTRODUCTION
	1.1 Multicast technology
	1.2 Multicast security issues

	2. MULTICAST SECURITY ARCH
	2.1 History
	2.2 Security Architecture

	3. KEY MANAGEMENT PROTOCOLS
	3.1 Logical Key Hierarchy
	3.2 Key Management Protocols
	3.2.1 Group Security Association Key Management Protocol (GSAKMP)
	3.2.2 Multimedia Internet Keying
	3.2.3 The Group Domain of Interpretation

	4. HOST IDENTITY PROTOCOL
	4.1 Host Identities
	4.2 Base exchange

	5. POSSIBLE IMPROVEMENTS
	6. USING HIP WITH GDOI
	4.7. FUTURE WORK
	9. REFERENCES

