
Key establishment in constrained devices

Jan-Erik Ekberg

13th October 2006

Abstract

For some classes of embedded devices or sen-
sors the ubiquotous, well researched meth-
ods and frameworks for key establishment
cannot be deployed because of device con-
straints. This paper examines and motivates
these limitations, which also forms the de-
sign criteria for key establishment protocols
related to this class of devices. A collec-
tion of existing methods are presented, and
the paper is concluded with some new key
establishment ideas, especially targeted for
constrained, mobile devices, rather that only
sensor networks.

1 Introduction

Key establishment between devices that
communicate over an unreliable channel
while still being constrained in terms of en-
ergy, cost, size or UI limitations is often prob-
lematic. This is especially true if the solution
is to be tied to a radio technology rather than
to a specific device (type). Typically the ab-
solute constraints would include:

1. Few assumption can be made about the
user interface. Sometimes there are no
users at all (like in sensor networks), and
even if there is a user, his interface can

be considered restricted to a few buttons
and a couple of LED:s / beeps (consider
wristwatches, mice, washing machines,
MP3-players).

2. The computing speed of the device is
often minuscule compared to e.g. per-
sonal computers — if there is encryption
on the communication channel the (sym-
metric) cipher suite is often a hardware
solution, and its management is done
with a simple, slow controller. Mem-
ory sizes of the controller can be in the
single-digit kB range for code, and pos-
sibly less that 1kB of data memory.

3. The (small) batteries of the device
should last for months without recharg-
ing. Power consumption issues are in
some cases the foremost design con-
straint.

4. There is no global network support nor
global connectivity. Thus, traditional
internet-style key exchange and key dis-
tribution protocols based on e.g. trusted
third parties (TTP:s) are not implemen-
tationally feasible.

5. Configuration during mass-production
is expensive and time-consuming. Ide-
ally, devices should leave the manufac-
turing line identically configured, and

1



any configuration should be done by the
user.

6. The manufacturing cost of mass-market
products is directly reflected in the end
price, and is thus instrumental in the
success of the design. In these segments,
the benefits of the security (key estab-
lishment) must remain in proportion to
any increase in cost.

In view of the constraints above, this paper
considers key establishment from the view-
point of what can be done with the tools
available in the embedded devices. For clari-
fication, asymmetric cryptography (and thus
Diffie-Hellman) is discarded without further
consideration, e.g. due to the cost involved of
including those algorithm for the single pur-
pose of key establishment. User involvement
through full-scale keyboards and displays is
also ignored, although interesting concepts
can be constructed in designs where, say one
device has a good display, and another a key-
board. Sensor designs form the basis of the
existing work, but the intent of the paper is
to move the focus somewhat more towards
consumer devices.

2 Cost

Cost as a general concept is a main design
criteria for any product, as the consumer of
a product or service in the end always weighs
benefit against cost, and in the face of compe-
tition, the product with the best benefit/cost
ratio usually is at an advantage. Security
protocols in a communication stack will in-
duce cost for the design in several ways. If
the design is to be implemented in hardware,
there is a design or purchase, as well as a

real estate cost (on the chip) related to the
hardware block(s) that implements the se-
curity mechanism. If some security mecha-
nisms are to be used only rarely (like in key
establishment) it may make sense to apply
them to the design in software, despite the
much higher energy cost — on the other hand
if specialized algorithms that are used only
once or twice can be eliminated altogether by
making use of mechanisms already deployed
for some more frequent activity even larger
savings can be achieved. The monetary cost
will play a role during development (where
the usefulness of security is weighed against
the extra development cost) as well as dur-
ing deployment, where the end customer will
have to pay for whatever additional cost se-
curity brings.

Energy consumption is a cost issue that is
especially prominent in battery-operated de-
vices, and indirectly very noticable to the end
user. For security protocols, this cost cate-
gory can be split into

1. Computational cost: Any computation
will consume energy, and the resource
requirements of security algorithms are
typically significant compared to other
logic needed for e.g. radio transmis-
sion. Dedicated chips / hardware blocks
are more energy-efficient than running
the same algorithm in a general purpose
controller or processor. Also, in prac-
tice the complexity of even simple se-
curity algorithms cannot perform ade-
quately in embedded controllers.

2. Memory cost: Partly a subcategory of
computation, the energy efficiency of
memory (especially if it needs to be
updated frequently) is independently of

2



technology fairly low if compared to HW
implementing simple logic flows. So a
“memory-efficient” algorithm consumes
less energy than a comparably complex
algorithm that needs large intermediary
storage buffers. This is well presented in
[10].

3. Communication cost: The price of a
transmitted bit is a dominant factor
when it comes to energy consumption
— even for transmission distances in the
sensor range (≤ 10 m). Thus, every
saved bit in communication brings down
the total energy cost.

To validate the previous statements, the
lower bounds of the energy cost per bit is
stated by [7] to be 18µJ/bit, and by [11] to
be 50µJ/bit for their respective sensor/PAN-
type radios. As transmission speed, power
control, modulation and channel overhead
like retransmissions and synchronization will
affect the bits/J ratio for a radio to a high de-
gree, these values can at best be considered
to be real-world examples roughly indicating
the range of transmission power consump-
tion. In the comparisons below, the 18µJ/bit

measure is used. Regarding the difference
between sending and receiving information
[4], [13] or [11] all indicate that transmis-
sion is only twice as costly as receiving, or
even less. At least for WLAN [4], also being
in idle mode (listening for incoming packets)
can be about as costly as actually sending or
receiving, and although it is difficult to see
the impact of security measures on this last
issue, mimizing idle time from a communica-
tion viewpoint is considered e.g. in [11].

Regarding memory energy consumption,
which in later measurements in many cases

is included, the following deductions can
be made. Both [10] and [5] cite the rel-
ative energy consumption of the flip-flop
memory included in their respective crypto-
graphic chips running at 100kHz and 3.3V /
1.5V, and the result gives a memory power
consumption of 22.8nW/bit (for [10]) and
9nW/bit (for [5]) respectively. Addition-
ally, Microprocessor cache energy consump-
tion has been measured on an experimental
basis in [6] — this can be considered an ap-
propriate example for memory with high con-
tent volatility. Many memory technologies
are reviewed, and one example (with about
average powr consumption), Dual−Vt mem-
ory, measures at gigabit clock speeds and
0.75V a cache energy consumption of 19.5
nW/bit, which is comparable to the flip-flop
measures above. Thus, for a 10kB mem-
ory the last measurement amounts to 1.6
mW = mJ/s, i.e. energy-wise equivalent to
transmitting 90 bits/s in the scenario out-
lined here.

The power consumption of a few common
cryptographic algorithms optimized for en-
ergy are shown in table 1. The SW measure-
ments [12], are measured on a Compaq iPaq
H3670, with an Intel SA-1110 StrongARM
clocked at 206MHz, i.e. on a PDA device.

Algorithm Energy/op (HW) Energy/op (SW)

AES(128b) 0.045 µJ [5] 17.9 µJ

RSA(1024b) 2.41/0.37 mJ [8] 546/16 mJ

ECC(163b) 0.66/1.1 mJ [2] 134/196 mJ

Table 1: Power consumption for some crypto
algorithms)

From the table we can also make note of that

3



the energy consumption of all the algorithms
increase by 200-400 times in their software
instantiations. So, clearly, for bulk encryp-
tion / integrity checks software algorithms
for security should never be used — or they
easily become the dominant power sink in
mobile devices. The collection table 1 com-
pares all mentioned aspects of energy con-
sumption:

6

-
(HW)

(SW)

Store 128b/h

Transmit 128b
(HW)

(SW)
ECC163

mJ
(log)

ECC163

AES128

AES128

10−4

10−3

10−2

10−1

1

101

102

103

10−2

Figure 1: Energy consumption compared
(logarithmic scale)

3 Key establishment be-

tween sensors

Key pre-distribution is the foremost means
for key establishment in sensor networks -
networks that are deployed by “dropping the
sensors into enemy territory”. The networks
that are discussed here, although not ex-
plicitely stated in the references, assume a
fixed topology, i.e. no mobility after network
deployment is considered. The trivial solu-
tions — a commonly shared key, or pairwise
shared keys — are inadequate solutions be-
cause:

1. A commonly shared key, or a mission
key for large networks suffers from the
vulnerablity that a capture / break-in of
any sensor might compromise the keying
of the whole network, and

2. Pairwise shared keys requires storage of
n keys, where n is the number of nodes
in the network. It is a big overhead to
pay in terms of configuration and mem-
ory consumption, since at deployment,
only the keys for the neighbors would be
used (4-5 keys out of a key set of 1000:s).
The pairwise key solution also provides
no extensibility of the network exceed-
ing the original intended maximum size
(spanned by the pairwise keys).

The above does not exclude the fact that
these mechanisms might well be usable in
e.g. small networks or in home environments
where the user configures the same key into
all devices. However, the further discussion
is based on the notion that for some reason
like network size, security requirement, or de-
vice configurability the “basic” solutions can-
not be used.

Also, it is not a given in a sensor network that
the security model is flat, i.e. that every de-
vice can talk securely to every other device.
In fact in many cases the structure of the
network itself will contain special nodes —
gateways to other networks for example —
that also could take a special role in a secu-
rity context, as security aggregators, trusted
third parties or as key servers. These kinds
of constructs are however left outside of the
scope of this paper.

3.1 Probabilistic key exchange

One of the first attempts to remedy the
abovementioned problems of pre-distributed
keys was achieved by probabilistic key shar-
ing [3]. A large enough key-space, say 100000
keys is allocated, and each device is assigned

4



a number of keys — if say, the assigned num-
ber is 250, there is a p=50% probability that
two randomly selected devices share a key.
This p can be calculated by basic probabil-
ity theory, but the authors additionally refer
to random graph theory to deduce whether a
path exists between two nodes in the whole
deployed network (a graph), in the case no
shared key exists between two (neigboring)
devices. It can be shown that for large graphs
a threshold function exists, where this sec-
ond probability moves from “nonexistent” to
“certainly true” at some level of connected-
ness (pairwise devices that do have common
keys). Thus, even if two devices do not share
a key, they can find common devices — a
path — over which every hop has a shared
key in place, and the paper also proves that
this path is rarely longer than a few hops.

The probabilistic key - sharing has the ad-
vantage, that given a large key-space addi-
tional sensors can be deployed at a later time
(the network can be extended). Also, in case
when a sensor is compromised, only a small
set of keys will be revealed to the attacker.

The main disadvantage of the scheme is the
uncertainty of the outcome, and some unclar-
ity of how the common nodes through which
pairwise security can be establised are found.
The referred paper provide simulations that
show path lengths of 2-16 hops for construct-
ing the key, so protocols based on probabilis-
tic key sharing must be fairly delay tolerant,
and a quite complex network “key discovery”
mechanism must be set up to accomodate for
key establishment.

3.2 PIKE

The probabilistic exchange used the notion
of local reachability for its graph model.
If global addressability is possible over the
deployed network, a more efficient pre-
distributed establishment protocol exists,
named PIKE (Peer Intermediaries for Key
Establishment) [7]. In this work, the key
space is made to fill a perfect square, every
node representing one position in the n × n

matrix. Prior to deployment, the node is as-
signed pairwise keys with all other nodes that
are either on the same row or the same line as
the node in question (thus 2∗(n−1) keys will
be available in the device). After deployment
any two devices can construct a shared key
through any node that share a row with one
of the nodes and a column with the other
(two such nodes exists, and are both sup-
ported for redundancy). Through the com-
mon node (with the smallest distance), using
the pairwise keys that exists between that
node and the nodes that wish to communi-
cate respectively, a key is sent and the result
is acknowledged.

The PIKE protocol can be extended into fur-
ther dimensions (from square to cube etc,),
saving storage, but the hops needed for key
agreement will increase by one every time the
dimensions is raised. Not all devices from
the PIKE square need to be deployed at one
time, making for extensibility, but the de-
ployment must proceed in an organized fash-
ion, so that the deployed devices constitute
something close to a square at all times, and
the deployed set should have no holes with
respect to that order. The PIKE protocol
provides perfect “reachability” in the absense
of device loss.

5



One problem with the PIKE idea is that the
common keys are scarce, and even with mod-
est sensor loss, other, alternative paths, are
needed to set up common keys. However,
as a difference to probabilistic key sharing,
the single PIKE node can deduce and try
such paths, as a global addressing scheme is
a given in the PIKE scheme.

3.3 Neural networks

Neural network constructs can also be used
in for key establishment. A system based on
tree parity machines has been proposed for
this [9], and a hardware design has also been
published [14]. Here, a neural network struc-
tured as a tree, has a decision function that
is the sign parity of the hidden node outputs.
Each device starts out with a randomly cho-
sen weight setup between the nodes in feed-
forward tree. The learning phase consists
of feeding the respective devices (the neural
network inputs) with the same (public) input
stream, e.g. taken from a pseudo-random
generator with a shared seed, to save com-
munication. The one-bit output (1/-1) of the
networks are compared (sent between the de-
vices), and in case they differ, the individual
weights of those neural network nodes that
have the same parity as the end result in the
device (i.e. the “wrong” value) are adjusted
towards the opposite direction). The end re-
sult of this process is that the weights of the
networks move towards each other, and even-
tually the outputs of the networks on equiva-
lent inputs are the same. The security moti-
vations is outlined in [9], and is the based on
the idea that as the initial weights are never
revealed, an eavesdropper cannot relate to
the learning process. Some attacks have been

proposed (listed in [14]) but seemingly suit-
able network parametrization will provide se-
curity against the available attacks. The use
of the synchronized neural networks is as key
material for another algorithm or directly as
a key stream as a stream cipher.

1 2 3
w11

x11 − x13 x21 − x23

w13

y3 = sign(
P3

i=1 w3ix3i)y1

out =
Q3

i=1 yi

Figure 2: Tree Parity construct

It is unclear what the energy consumption
or security level of the proposed neural net-
work construct really is – at least the mem-
ory requirements might be fairly high. For
personal-grade communication needs, espe-
cially in the absence of better solutions, this
system provides an alternative basis for key
establishment that is certainly better than
no protection at all.

3.4 Key infection

Another take on sensor key establishment is
taken by a process labelled key infection [1].
Here the attacker model is revised to be

1. The attacker does not have physical ac-
cess to the deployment site during the
deployment phase,

2. The attacker is able to monitor only a
small proportion of the network commu-
nication during the deployment phase,
and that

6



3. The attacker is unable to launch active
attacks during the deployment phase
(such as jamming)

The reasoning behind the model is that many
use cases exist where networks are deployed /
initiated in geographical areas where attack-
ers are extremely unlikely to be present in
large numbers until after deployment. The
method of key infection roughly mean that
a node broadcasts its name and key in the
clear for its nearest neighborhood, and other
nodes that hear this call will respond with a
session key and their own identity encrypted
with the broadcast key. An improved version
of the system is called whisper keying where
the broadcasting devices starts out with less
transmission power, and only gradually in-
creases the power of its brodcasts. Neighbor-
ing devices that hear the call respond with
equally low transmission power. With whis-
per, the danger of an eavesdropper overhear-
ing the key establishment messages is mini-
mized.

To improve the end result and weed out at-
tacking entities, a system named secrecy am-
plification is deployed. If two devices W1 and
W2 have made a common shared key, but
also both have established a secret with a
device W3, the shared key between W1and
W2 can be amplified in the following manner:
W1 sends a random value to W2 through W3

(encrypted by the respective shared keys, W3

re-encrypts), and the original shared key be-
tween W1 and W2 is diversified based on the
random value. The end result is that if the
original shared key between W1 and W2 was
secure, the new one will also be, but even
in the case where the old W1 → W2 - key
was compromised, the new one will not be

if the keys W1 → W3 and W3 → W2 were
not. Simulations indicate that the amplifica-
tion improves the keying reliability by several
tens of percentage points in the face of a at-
tacker.

�
�

�
��

1 3

2

k12

k13

k23

�
�

�
��

1 3

2

Ek12 (2, 3, N23)

Ek13 (2, 3, N23)

k′23 = H(k23, N23)

k′23 = H(k23, N23)

Figure 3: Security amplification

Another improvement strategy is to con-
struct end-to-end keying. This wastes node
memory, but enables multi-hop secrecy am-
plificaton, providing an overlay amplification
strategy.

4 Time-domain amplifica-

tion

Although the same constraints as in sensors
apply, mobile devices can be seen to have one
advantage over sensors - the network topol-
ogy is volatile. With the same attack model
used in key injection, it can be claimed that
the possibility of an attacker being present
at the time of key establishment is minus-
cule for commercial devices, possibly with
the exception of the point of purchase, where

7



many pairings could be expected to happen.
But in the spirit of secrecy amplification in
the topology domain, the amplification in the
mobile scenario can be executed in the time
domain. By asking the customer to keep the
devices with him (e.g. in a pocket) for an
hour up to a day, it is unlikely that an eaves-
dropper would be able to “follow the pocket”
reliably if the user moves around. Trivially,
secrecy amplification can be acheived by the
following protocol

D1 D2

RAND_A

------------------------->

RAND_B

<------------------------

k_1 = E(RAND_A, RAND_B)

... time ...

E(k_1, RAND_A2),E(k_1, D1, D2, RAND_A2)

------------------------->

E(k_1, RAND_B2),E(k_1, D2, D2, RAND_B2)

<------------------------

k_2 = E(k_1, RAND_A2 XOR RAND_B2)

... time ...

where E denotes an encryption function or a
keyed cryptographic hash — in fact the one-
wayness of a hash may eliminate some pos-
sible attacks. The user can be alerted if the
pairing fails at some stage, as well as stopped
(and even continued) at any suitable time.
This protocol has the partial advantage that
the devices may be idle and saving energy
during the time intervals, but the number of
rounds will tax energy consumption (how-
ever, compared to a software implementa-
tion of e.g. ellipitic curve Diffie-Hellman
(ECC/DH) hundreds of messages can be ex-
changed to be equivalent in energy consump-
tion). The protocol is not suitable for adhoc

(quick set-up) connections, and neither for
situations where one of devices is fixed (like
a washing-machine).

5 Fixed-device amplifica-

tion

The original amplification strategy in [1] can
be made to work in the mobile domain by
adding a cache to the amplification messages.
Consider devices D1, D2 and D3 where D1

is a fixed device, and D2, D3 mobile. These
devices all have paired previously, so keys
k12, k13 and k23 exist. Still the recent key
k12 is waiting to be amplified. Now, when
D2 meets D3, it will give a list of peers that
it wants amplification for, amongst those D1.
As D3 has a key for D1, it will accept a
packet Ek23(D1, D2, N1) and return the re-
ply to D2 in the form Ek13(D1, D2, N1), D3.
Now D2 can carry this cached amplification
back to D1, and if k13 has not changed in
between (possibly the key between D1 and
D3 is also being amplified), the amplifica-
tion can be carried out, and a new key (e.g.
k′
12 = Ek12(N1)) can be constructed and val-

idated between devices D1 and D2. The end
result of the amplification is equivalent to the
original case - if k23 was safe, then k13 will
now also be, otherwise no change occured in
the secrecy.

The strategy of cached amplifications need
not be restricted to fixed devices, it can also
be used for any device in the network to im-
prove key confidentiality.

8



6 Radio environment info

amplification

A commonality that is present in peer-to-
peer mobile networks is that devices will
make the presence known to peers for the
sake of enabling incoming connections. This
strategy is often named advertising. Consid-
ering the amplification algorithm in the time
domain, the initial assumption being only
that the attacker cannot follow the mobile
devices long enough to keep track of the pair-
ing process. Additionally the devices that
are establishing the key can make use of the
changing environment by making a log of de-
vice addresses that are visible during the in-
tervals where the key establishment process
is idle. Because the list of visible device
might not be end up to be equivalent, the fol-
lowing strategy could be used (this sequence
is combined with the actual key amplifica-
tion):

D1 D2

ADDR_1/LOW_BITS

------------------------->

if ADDR_1 found

k’ = E(k, ADDR_1)

else k’ = k

ADDR_2/LOW_BITS,

E(k’,ADDR_2/LOW_BITS)

<------------------------

determine k’

if ADDR_2 found

k’’ = E(k’, ADDR_2)

else k’’ = k’

where the lengths of the address parts and
checksums can be set to quite short (2 bytes
each) as the protocol will catch ambiguity
and protection against active attacks (like
the attacker actually producing most of the
visible address content) is limited. Also col-
lisions in LOW BITS can simply be ignored

— treated as addresses that are not seen.

Equivalently, any other contextual informa-
tion that is available to the pairing devices
(service discovery, satellite beacons, temper-
ature, wind, ...) can be used in the same
manner as the encountered addresses.

7 Obfuscation in noisy en-

vironment

A basic form of security augmentation by
means of obfuscation is Merkle’s puzzles (see
figure 4). There one device transmits a num-
ber of puzzles (say N) to the other party,
that are solvable in some limited time, and
by solving a puzzle an index, and a key are
revealed to the receiver. The puzzles in the
picture are solved by trying all possible keys
until the CONST parameter is revealed in
a decryption, if so, the index (RANDx) and
the key (F (RANDx)) likewise. From the re-
ceived puzzle set, the receiver solves one puz-
zle, returns the index, and the corresponding
key can be retrieved by the sender based on
the index. An attacker has no use of the
transmitted index, so he must break on av-
erage N/2 puzzles to find the index and the
corresponding key. As the attacker is faced
with a more difficult computational problem
some measure of security can be attributed
to this scheme. To be noticed, however, is
that the increase in work is linear.

As a sideline, another aspect that is al-
ways controllable by a radio layer is the ad-
dressing. Although the device (MAC) ad-
dress usually is fixed and globally unique,
this is not at all necessary. The confu-
sion with global addressing is well stated in
[?]: The address is currently used 1) as a

9



-

-

-

�

Device1 Device2

Ri ∈ [0, N ]

ER1 (CONST, RAND1, F (RAND1))

ER2 (CONST, RAND2, F (RAND2))

ERN
(CONST, RANDN , F (RANDN ))

solve one ...

RANDN

F (RANDN )

F known

Figure 4: Merkle’s Puzzles

unique identifier “in the entire” world to in-
dex sessions (like shared security contexts)
and identify devices, as well as 2) a local
identifier to distinguish between devices in
the layer 2 network — which in e.g. PAN
networks often consists of less than 10 nodes!
Thus for local addressing the fixed and glob-
ally unique identifier is no requirement —
although a convenient identity mechanism,
there are other (and cryptographically bet-
ter ways) to assert identity, e.g based on user
credentials.

Now, consider an environment where devices
come and go, and devices also might change
their addresses at will, e.g. for privacy rea-
sons. So there is a lot of change going on, if
the device periodically scans its environment.

We also assume an input mechanism on the
devices involved in the pairing. This input
might constitute a single button. The direc-
tion of the key establishment is determined
(one device transmits the key, the other one
listens). The algorithm can be interleaved
in a way where both devices send the key
in alternating button presses or even, at the
expense of security, in parallel (no order).

Returning to the concept of Merkle’s puz-
zles, the whole pairing process (which in an
ideal case could take hours) requires both de-
vices to advertise random addresses chang-

ing at random intervals. Here, the choice
is between a deployment strategy where the
random address is changed very frequently,
but within scanning resolution (so that an
active scanner would with a very high prob-
ablity catch all advertised addresses), or an
adaptive strategy where the random address
update is adjusted to the current volatility
of the environment. In the second case, the
change of address also implies that the broad-
casting of the new address need not follow
immediately after the disappearance of the
old, but rather this interval is also adjusted
to environmental conditions. The basic dif-
ference between the strategies is that in the
first instantiation the devices strive to pro-
duce “false” information as much as possi-
ble, while the attacker is given the means to
identify when a pairing takes place, whereas
the second strategy hides the pairing in an
already noisy environment, with the addi-
tional benefit of saving power. The latter
strategy is to its advantage in public places,
whereas the first excels in secluded radio en-
vironments (like in homes).

The actual key establishment proceeds as fol-
lows: The sending device randomly generates
twp random keys key, and keytrans (say 128
bits each), and divide both into N (say 16)
pieces, each piece being one byte in our ex-
ample. The keytrans is diversified into 16
separate keys (see figure 5), and for each
piece of the key key[i], a pattern pati is pro-
duced by encrypting with the diversified key:
pati = Ekti

(key[i]). 16 transmission packets
are constructed by appending as much of pati

as possible to keytrans[i] to form the length
of an address in the wireless system.

After the initialization phase, the key agree-
ment / transfer can start. The user is asked

10



?
-

?

?
-

?

?
-

?

?
-

?

keytrans

1969 ...1407

trans2

...

trans1

(pat1)0...39 1969

(pat2)0...39 1407

keytrans[1]

keytrans[2]

EkeytransEkeytrans

1 2

H

229

kt2 ...

...

H

23

kt1

pat1 pat2

kt1 kt2

key
23 229 ...

Figure 5: Noisy Algorithm

to press the buttons on both devices simulta-
neously. When the key is pressed the sender
changes its own address to the relevant trans-
mission packet. The receiver will take note
in its scan which new (not previously seen
addresses) appeared during a short interval
(+/- 3 seconds?). This implies that the re-
ceiver should be continuosly scanning during
the pairing process, and maintain some form
of FIFO queue of recently seen addresses.

The user should press the buttons N times,
preferrably with some interval, and possibly
movement in the intermission. Note that
these events are subliminal in the face of an
observer on the radio alone - there is no clear
indication when a pairing starts, and when it
ends.

After the last button press, the receiving de-
vice has collected a path (possibly even al-
ternative paths) of devices that happened to
appear at the right moment(s). It is, how-
ever, preferrable, that the devices continue
changing addresses for a random period also
after this event. From these paths, a num-
ber of alternative keys k of the counterpart
can be retrieved. The keys are tested against
the addresses of the path, the patterns, re-
vealing the xi:s if a match is found in the
addresses. This is the equivalence of the puz-
zle in Merkle’s puzzle. The concatenations of
the xi:s form a key.

The critical augmentation, and the reason
why this puzzle is harder — difficulty be-
comes exponential in relation to the num-
ber of transmitted key parts in addition to
the O(N) increase for the total transmitted
material is that a hidden function provides
synchronization between the sender and the
receiver, invisible to the attacker.

11



This system also lends itself to password ini-
tiation. E.g. a 4-digit PIN can be labeled
on a headset. The PIN is transformed (by
any pseudo-random generator) into a timed
sequence of N events (the timing need not be
more exact that in the range seconds to an
hour). On entry into a phone, the same se-
quence can be initiated, and the process can
be that an unpaired headset starts the pair-
ing at boot-up, and the phone user is asked
to synchronize to that, replacing the button-
presses. However, care must be taken not to
let the resolution of the PIN affect the reso-
lution of the timing.

For a short calculation of the attack strength
in the face of two secluded devices, where
the devices change addresses on average ev-
ery two seconds, and the user actually fol-
lows instructions and presses the buttons e.g.
eight times during a 5-minute “coffee break”.
Both devices will transmit 150 addresses, i.e.
300 addresses will be visible on the radio. As
there is no indication of which address be-
longs to which device the stategy is to try all
combinations of 16 addresses in the face of
the 300 presented ones, which equals

C =
(
300
16

)
≈ 1022

As the key is confirmed by, on the average
128 tries with AES, the end result amounts
to sigificant work for the attacker. Even for
the legitimate device the workload becomes
heavy if the path space grows. E.g. if assum-
ing an energy-efficient AES chip that ciphers
one block in 10 ms in the embedded devices
the transfer should be repeated if too many
path choices present themselves to the legit-
imate receiver. (leading to an easy denial-
of-service attack). Also, the direction of the
tranmission, if at all possible should be di-
rected from the less poweful device (produc-

ing the key) to the more powerful device (re-
solving the key).

Figure 6: Path problem for the legitimate
receiver

In the general case, the problem can be re-
duced to combinatorics over the time slots,
and for fixed timeslots other solutions (even
without obfuscated messages/addresses that
essentially serve as synchronization) can be
envisioned. The transmission key need not
be transferred, but can be derived e.g. from
timeslot sequence numbers.

One critical thing to note in the general case
is that the workload of the attacker can be
reduced to a single encryption per try, if the
transmission key is straight-forwardly used
for encryption and some guess can be made
regarding the content at some specific in-
stance – the attacker takes his puzzle from
the use of the key encryption and not from
the puzzle. The current solution provides
this protection at a computational cost —
a fast re-negotiation of a new key should be
equivalently secure.

This algorithm is not energy-efficient, in fact
in its first instantiation it is wasting energy

12



to provide obfuscation, and through that, se-
curity. It is, however, cost-efficient in the
presence of symmetric encryption (or keyed
hash) hardware, the key establishment logic
is nearly trivial and easy to implement.

In this scheme, the enlightened behaviour of
users is of importance. Hurrying through
the scheme will make an attack significantly
easier. easier. The instructions in a mo-
bile scenario should read: “Start the pairing,
and keep the devices close to each other in a
pocket, handbag or equivalent. Go for a cof-
fee or the bus to work, and now and then dig
up the devices and press the buttons simul-
taneously. You’ll have to press the buttons
16 times (a beep will sound when you press
the buttons the 16th time). Take your time,
the longer you keep at it, the better security
you will end up with”.

8 Acknowledgements

I thank the reviewers — N.Asokan, Dan Fors-
berg and Jani Suomalainen — for suggesting
improvements to the solutions presented in
this paper. I also thank Kaisa Nyberg for
useful comments during the writing of this
paper that greatly improved the presentation
of this paper.

9 Conclusions

In parallel with more efficient versions of
mainstream security (e.g. ECC chips), wire-
less communication, e.g. through RFID tech-
nologies, is hosted by evermore smaller and
cheaper devices (advertisments, name tags,
..). Whereas communication confidentiality
and integrity is relatively easy to arrange

for communication between these kind of
devices, in the problem area of key estab-
lishment simple solutions, tailored to spe-
cific communication domains and using avail-
able cryptographic services will remain more
cost effective than mainstream pairing al-
gorithms. This paper adds to this toolset
by summarizing some of the design criteria
present in the domain, and presenting a few
new ideas and methods for establishing key
material in truly constrained devices.

13



References

[1] Ross Anderson, Chan Haowen, and
Adrian Perrig. Key infection: Smart
trust for smart dust, 2001.

[2] Guido Bertoni, Luca Breveglieri, and
Matteo Venturi. Ecc hardware copro-
cessors for 8-bit systems and power con-
sumption considerations. itng, 0:573–
574, 2006.

[3] L. Eschenauer and V. Gligor. A key
management scheme for distributed sen-
sor networks, 2002.

[4] M. Feeney, L.M.; Nilsson. Investigat-
ing the energy consumption of a wireless
network interface in an ad hoc network-
ing environment. In INFOCOM 2001.
Twentieth Annual Joint Conference of
the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE ,
vol.3, no.pp.1548-1557 vol.3, 2001.

[5] J.; Rijmen V. Feldhofer, M.; Wolkerstor-
fer. Aes implementation on a grain of
sand. In Information Security, IEE Pro-
ceedings , vol.152, no.1pp. 13- 20, Oct.,
2005.

[6] V Agarwal S Keckler D Burger H Han-
son, S Hrishikesh. Static energy re-
duction techniques for microprocessor
caches. IEEE Transactions on VLSI
Systems, 11(3), June 2003.

[7] A Haowen Chan; Perrig. Pike: Peer
intermediaries for key establishment in
sensor networks. In INFOCOM 2005.
24th Annual Joint Conference of the
IEEE Computer and Communications
Societies. Proceedings IEEE , vol.1,

no.pp. 524- 535 vol. 1, 13-17 March,
2005.

[8] A.P. Charndrakasan J Goodman. An
energy-efficient reconfigurable public-
key cryptography processor. IEEE
Journal of Solid-state Circuits, 36(11),
Nov 2001.

[9] I. Kanter, W. Kinzel, and E. Kanter.
Secure exchange of information by syn-
chronization of neural networks. Euro-
physics Letters, 57:141, 2002.

[10] C Rechberger M Feldhofer. A case
against currently used hash functions in
rfid protocols. Workshop on RFID Se-
curity 2006 - RFIDSec06, July 13-14,
Graz, Austria.

[11] N.H. Miller, M.J.; Vaidya. Minimiz-
ing energy consumption in sensor net-
works using a wakeup radio. In Wireless
Communications and Networking Con-
ference, 2004, 2004.

[12] Nachiketh R. Potlapally, Srivaths Ravi,
Anand Raghunathan, and Niraj K. Jha.
Analyzing the energy consumption of se-
curity protocols. In ISLPED ’03: Pro-
ceedings of the 2003 international sym-
posium on Low power electronics and
design, pages 30–35, New York, NY,
USA, 2003. ACM Press.

[13] Tijs van Dam and Koen Langendoen.
An adaptive energy-efficient mac proto-
col for wireless sensor networks. In Sen-
Sys ’03: Proceedings of the 1st inter-
national conference on Embedded net-
worked sensor systems, pages 171–180,
New York, NY, USA, 2003. ACM Press.

14



[14] Markus Volkmer and Sebastian Wallner.
Tree parity machine rekeying architec-
tures for embedded security.

15


	Introduction
	Cost
	Key establishment between sensors
	Probabilistic key exchange
	PIKE
	Neural networks
	Key infection

	Time-domain amplification
	Fixed-device amplification
	Radio environment info amplification
	Obfuscation in noisy environment
	Acknowledgements
	Conclusions

