
Key establishment in constrained devices

Jan-Erik Ekberg

9th October 2006

Abstract

For some classes of embedded devices or sen-
sors the ubiquotous, well researched meth-
ods and frameworks for key establishment
cannot be deployed because of device con-
straints. This paper examines and motivates
these limitations, which also forms the de-
sign criteria for key establishment protocols
related to this class of devices. A collec-
tion of existing methods are presented, and
the paper is concluded with some new key
establishment ideas, especially targeted for
constrained, mobile devices, rather that only
sensor networks.

1 Introduction

Key establishment between devices that
communicate over an unreliable channel
while still being constrained in terms of en-
ergy, cost, size or UI limitations is often prob-
lematic. This is especially true if the solution
is to be tied to a radio technology rather than
to a specific device (type). Typically the ab-
solute constraints would include:

1. Few assumption can be made about the
user interface. Sometimes there are no
users at all (like in sensor networks), and
even if there is a user, his interface can

be considered restricted to a few buttons
and a couple of LED:s / beeps (consider
wristwatches, mice, washing machines,
MP3-players).

2. The computing speed of the device is
often minuscule compared to e.g. per-
sonal computers — if there is encryption
on the communication channel the (sym-
metric) cipher suite is often a hardware
solution, and its management is done
with a simple, slow controller. Mem-
ory sizes of the controller can be in the
single-digit kB range for code, and pos-
sibly less that 1kB of data memory.

3. The (small) batteries of the device
should last for months without recharg-
ing. Power consumption issues are in
some cases the foremost design con-
straint.

4. There is no global network support nor
global connectivity. Thus, traditional
internet-style key exchange and key dis-
tribution protocols based on e.g. TTP:s
are not implementationally feasible.

5. Configuration during mass-production
is expensive and time-consuming. Ide-
ally, devices should leave the manufac-
turing line identically configured, and
any configuration should be done by the
user.

1



6. The manufacturing cost of mass-market
products is directly reflected in the end
price, and is thus instrumental in the
success of the design. In these segments,
the benefits of the security (key estab-
lishment) must remain in proportion to
any increase in cost.

In view of the constraints above, this paper
considers key establishment from the view-
point of what can be done with the tools
available in the embedded devices. For clari-
fication, asymmetric cryptography (and thus
Diffie-Hellman) is discarded without further
consideration, e.g. due to the cost involved of
including those algorithm for the single pur-
pose of key establishment. User involvement
through full-scale keyboards and displays is
also ignored, although interesting concepts
can be constructed in designs where, say one
device has a good display, and another a key-
board. Sensor designs form the basis of the
existing work, but the intent of the paper is
to move the focus somewhat more towards
consumer devices.

2 Cost

Cost as a general concept is a main design
criteria for any product, as the consumer of
a product or service in the end always weighs
benefit against cost, and in the face of compe-
tition, the product with the best benefit/cost
ratio usually is at an advantage. Security
protocols in a communication stack will in-
duce cost for the design in several ways. If
the design is to be implemented in hardware,
there is a design or purchase, as well as a
real estate cost (on the chip) related to the
hardware block(s) that implements the se-

curity mechanism. If some security mecha-
nisms are to be used only rarely (like in key
establishment) it may make sense to apply
them to the design in software, despite the
much higher energy cost — on the other hand
if specialized algorithms that are used only
once or twice can be eliminated altogether by
making use of mechanisms already deployed
for some more frequent activity even larger
savings can be achieved. The monetary cost
will play a role during development (where
the usefulness of security is weighed against
the extra development cost) as well as dur-
ing deployment, where the end customer will
have to pay for whatever additional cost se-
curity brings.

Energy consumption is a cost issue that is
especially prominent in battery-operated de-
vices, and indirectly very noticable to the end
user. For security protocols, this cost cate-
gory can be split into

1. Computational cost: Any computation
will consume energy, and the resource
requirements of security algorithms are
typically significant compared to other
logic needed for e.g. radio transmis-
sion. Dedicated chips / hardware blocks
are more energy-efficient than running
the same algorithm in a general purpose
controller or processor. Also, in prac-
tice the complexity of even simple se-
curity algorithms cannot perform ade-
quately in embedded controllers.

2. Memory cost: Partly a subcategory of
computation, the energy efficiency of
memory (especially if it needs to be
updated frequently) is independently of
technology fairly low if compared to HW
implementing simple logic flows. So a

2



“memory-efficient” algorithm consumes
less energy than a comparably complex
algorithm that needs large intermediary
storage buffers. This is well presented in
[10].

3. Communication cost: The price of a
transmitted bit is a dominant factor
when it comes to energy consumption
— even for transmission distances in the
sensor range (≤ 10 m). Thus, every
saved bit in communication brings down
the total energy cost.

To validate the previous statements, [7] and
[11] state the lower bounds of the energy cost
for their respective sensor/PAN-type radios
to be 18µJ/bit and 50µJ/bit, respectively.
As transmission speed, power control, mod-
ulation and channel overhead like retrans-
missions and synchronization will affect the
bits/J ratio for a radio to a high degree, these
values can at best be considered to be real-
world examples roughly indicating the range
of transmission power consumption. In the
comparisons below, the 18µJ/bit measure is
used. Regarding the difference between send-
ing and receiving information [4], [13] or [11]
all indicate that transmission is only twice
as costly as receiving, or even less. At least
for WLAN [4], also being in idle mode (lis-
tening for incoming packets) can be about as
costly as actually sending or receiving, and
although it is difficult to see the impact of se-
curity measures on this last issue, mimizing
idle time from a communication viewpoint is
considered e.g. in [11].

Regarding memory energy consumption,
which in later measurements in many cases
is included, the following deductions can
be made. Both [10] and [5] cite the rel-

ative energy consumption of the flip-flop
memory included in their respective crypto-
graphic chips running at 100kHz and 3.3V /
1.5V, and the result gives a memory power
consumption of 22.8nW/bit and 9nW/bit
respectively. Additionally, Microprocessor
cache energy consumption has been mea-
sured on an experimental basis in [6] — this
can be considered an appropriate example for
memory with high content volatility. One
example (Dual−Vt memory)measures at gi-
gabit clock speeds and 0.75V a cache energy
consumption of 19.5 nW/bit, which is compa-
rable to the flip-flop measures above. Thus,
for a 10kB memory the last measurement
amounts to 1.6 mW = mJ/s, i.e. energy-
wise equivalent to transmitting 90 bits/s in
the scenario outlined here.

The power consumption of a few common
cryptographic algorithms optimized for en-
ergy are shown in table 1. The SW measure-
ments [12], are measured on a Compaq iPaq
H3670, with an Intel SA-1110 StrongARM
clocked at 206MHz, i.e. on a PDA device.

Algorithm Energy/op (HW) Energy/op (SW)

AES(128b) 0.045 µJ [5] 17.9 µJ

RSA(1024b) 2.41/0.37 mJ [8] 546/16 mJ

ECC(163b) 0.66/1.1 mJ [2] 134/196 mJ

Table 1: Power consumption for some crypto
algorithms)

From the table we can also make note of that
the energy consumption of all the algorithms
increase by 200-400 times in their software
instantiations. So, clearly, for bulk encryp-
tion / integrity checks software algorithms
for security should never be used — or they

3



easily become the dominant power sink in
mobile devices. The collection table 1 com-
pares all mentioned aspects of energy con-
sumption:

6

-
(HW)

(SW)

Store 128b/h

Transmit 128b
(HW)

(SW)
ECC163

mJ
(log)

ECC163

AES128

AES128

10−4

10−3

10−2

10−1

1

101

102

103

10−2

Figure 1: Energy consumption compared
(logarithmic scale)

3 Key establishment be-

tween sensors

Key pre-distribution is the foremost means
for key establishment in sensor networks -
networks that are deployed by “dropping the
sensors into enemy territory”. The networks
that are discussed here, although not ex-
plicitely stated in the references, assume a
fixed topology, i.e. no mobility after network
deployment is considered. The trivial solu-
tions — a commonly shared key, or pairwise
shared keys — are inadequate solutions be-
cause:

1. A commonly shared key, or a mission
key suffers from the vulnerablity that a
capture of any sensor might compromise
the keying of the whole network, and

2. Pairwise shared keys requires storage of
n keys, where n is the number of nodes
in the network. It is a big overhead to
pay in terms of configuration and mem-
ory consumption, since at deployment,

only the keys for the neighbors would be
used (4-5 keys out of a key set of 1000:s).
The pairwise key solution also provides
no extensibility of the network exceed-
ing the original intended maximum size
(spanned by the pairwise keys).

3.1 Probablistic key exchange

One of the first attempts to remedy the
abovementioned problems of pre-distributed
keys was achieved by probabilistic key shar-
ing [3]. A large enough key-space, say 100000
keys is allocated, and each device is assigned
a number of keys — if say, the assigned num-
ber is 250, there is a p=50% probability that
two randomly selected devices share a key.
This p can be calculated by basic probabil-
ity theory, but the authors additionally refer
to random graph theory to deduce whether a
path exists between two nodes in the whole
deployed network (a graph), in the case no
shared key exists between two (neigboring)
devices. It can be shown that for large graphs
a threshold function exists, where this sec-
ond probability moves from “nonexistent” to
“certainly true” at some level of connected-
ness (pairwise devices that do have common
keys). Thus, even if two devices do not share
a key, they can find common devices — a
path — over which every hop has a shared
key in place, and the paper also proves that
this path is rarely longer than a few hops.

The probabilistic key - sharing has the ad-
vantage, that given a large key-space addi-
tional sensors can be deployed at a later time
(the network can be extended). Also, in case
when a sensor is compromised, only a small
set of keys will be revealed to the attacker.

4



3.2 PIKE

The probabilistic exchange used the notion
of local reachability for its graph model.
If global addressability is possible over the
deployed network, a more efficient pre-
distributed establishment protocol exists,
named PIKE (Peer Intermediaries for Key
Establishment) [7]. In this work, the key
space is made to fill a perfect square, every
node representing one position in the n × n

matrix. Prior to deployment, the node is as-
signed pairwise keys with all other nodes that
are either on the same row or the same line as
the node in question (thus 2∗(n−1) keys will
be available in the device). After deployment
any two devices can construct a shared key
through any node that share a row with one
of the nodes and a column with the other
(two such nodes exists, and are both sup-
ported for redundancy). Through the com-
mon node (with the smallest distance), using
the pairwise keys that exists between that
node and the nodes that wish to communi-
cate respectively, a key is sent and the result
is acknowledged.

The PIKE protocol can be extended into fur-
ther dimensions (from square to cube etc,),
saving storage, but the hops needed for key
agreement will increase by one every time the
dimensions is raised. Not all devices from
the PIKE square need to be deployed at one
time, making for extensibility, but the de-
ployment must proceed in an organized fash-
ion, so that the deployed devices constitute
something close to a square at all times, and
the deployed set should have no holes with
respect to that order. The PIKE protocol
provides perfect “reachability” in the absense
of device loss.

3.3 Neural networks

Neural network constructs can also be used
in for key establishment. A system based on
tree parity machines has been proposed for
this [9], and a hardware design has also been
published [14]. Here, a neural network struc-
tured as a tree, has a decision function that
is the sign parity of the hidden node outputs.
Each device starts out with a randomly cho-
sen weight setup between the nodes in feed-
forward tree. The learning phase consists
of feeding the respective devices (the neural
network inputs) with the same (public) input
stream, e.g. taken from a pseudo-random
generator with a shared seed, to save com-
munication. The one-bit output (1/-1) of the
networks are compared (sent between the de-
vices), and in case they differ, the individual
weights of those neural network nodes that
have the same parity as the end result in the
device (i.e. the “wrong” value) are adjusted
towards the opposite direction). The end re-
sult of this process is that the weights of the
networks move towards each other, and even-
tually the outputs of the networks on equiva-
lent inputs are the same. The security moti-
vations is outlined in [9], and is the based on
the idea that as the initial weights are never
revealed, an eavesdropper cannot relate to
the learning process. Some attacks have been
proposed (listed in [14]) but seemingly suit-
able network parametrization will provide se-
curity against the available attacks. The use
of the synchronized neural networks is as key
material for another algorithm or directly as
a key stream as a stream cipher.

It is unclear what the energy consumption
or security level of the proposed neural net-
work construct really is – at least the mem-

5



1 2 3
w11

x11 − x13 x21 − x23

w13

out =
Q3

i=1 yi

y1 = sign(
P3

i=1 w1ix1i)

Figure 2: Tree Parity construct

ory requirements might be fairly high. For
personal-grade communication needs, espe-
cially in the absence of better solutions, this
system provides an alternative basis for key
establishment that is certainly better than
no protection at all.

3.4 Key infection

Another take on sensor key establishment is
taken by a process labelled key infection [1].
Here the attacker model is revised to be

1. The attacker does not have physical ac-
cess to the deployment site during the
deployment phase,

2. The attacker is able to monitor only a
small proportion of the network commu-
nication during the deployment phase,
and that

3. The attacker is unable to launch active
attacks during the deployment phase
(such as jamming)

The reasoning behind the model is that many
use cases exist where networks are deployed /
initiated in geographical areas where attack-
ers are extremely unlikely to be present in
large numbers until after deployment. The
method of key infection roughly mean that

a node broadcasts its name and key in the
clear for its nearest neighborhood, and other
nodes that hear this call will respond with a
session key and their own identity encrypted
with the broadcast key. An improved version
of the system is called whisper keying where
the broadcasting devices starts out with less
transmission power, and only gradually in-
creases the power of its brodcasts. Neighbor-
ing devices that hear the call respond with
equally low transmission power. With whis-
per, the danger of an eavesdropper overhear-
ing the key establishment messages is mini-
mized.

To improve the end result and weed out at-
tacking entities, a system named secrecy am-
plification is deployed. If two devices W1 and
W2 have made a common shared key, but
also both have established a secret with a
device W3, the shared key between W1and
W2 can be amplified in the following manner:
W1 sends a random value to W2 through W3

(encrypted by the respective shared keys, W3

re-encrypts), and the original shared key be-
tween W1 and W2 is diversified based on the
random value. The end result is that if the
original shared key between W1 and W2 was
secure, the new one will also be, but even
in the case where the old W1 → W2 - key
was compromised, the new one will not be
if the keys W1 → W3 and W3 → W2 were
not. Simulations indicate that the amplifica-
tion improves the keying reliability by several
tens of percentage points in the face of a at-
tacker.

Another improvement strategy is to con-
struct end-to-end keying. This wastes node
memory, but enables multi-hop secrecy am-
plificaton, providing an overlay amplification
strategy.

6



�
�

�
��

1 3

2

k12

k13

k23

�
�

�
��

1 3

2

Ek12 (2, 3, N23)

Ek13 (2, 3, N23)

k′23 = H(k23, N23)

k′23 = H(k23, N23)

Figure 3: Security amplification

4 Time-domain amplifica-

tion

Although the same constraints as in sensors
apply, mobile devices can be seen to have one
advantage over sensors - the network topol-
ogy is volatile. With the same attack model
used in key injection, it can be claimed that
the possibility of an attacker being present
at the time of key establishment is minus-
cule for commercial devices, possibly with
the exception of the point of purchase, where
many pairings in fact could be carried out.
But in the spirit of secrecy amplification in
the topology domain, the amplification in the
mobile scenario can be executed in the time
domain. By asking the customer to keep the
devices with him (e.g. in a pocket) for an
hour up to a day, it is unlikely that an eaves-
dropper would be able to “follow the pocket”
reliably if the user moves around. Trivially,
secrecy amplification can be acheived by the
following protocol

D1 D2

RAND_A

------------------------->

RAND_B

<------------------------

k_1 = E(RAND_A, RAND_B)

... time ...

E(k_1, RAND_A2),E(k_1, D1, D2, RAND_A2)

------------------------->

E(k_1, RAND_B2),E(k_1, D2, D2, RAND_B2)

<------------------------

k_2 = E(k_1, RAND_A2 XOR RAND_B2)

... time ...

where the user can be alerted if the pairing
fails at some stage, as well as stopped (and
even continued) at any suitable time. This
protocol has the partial advantage that the
devices may be idle and saving energy during
the time intervals, but the number of rounds
will tax energy consumption (however, com-
pared to a software implementation of e.g.
ECC/DH hundreds of messages can be ex-
changed to be equivalent in energy consump-
tion). The protocol is not suitable for adhoc
(quick set-up) connections, and neither for
situations where one of devices is fixed (like
a washing-machine).

5 Fixed-device amplifica-

tion

The original amplification strategy in [1] can
be made to work in the mobile domain by
adding a cache to the amplification messages.
Consider devices D1, D2 and D3 where D1

is a fixed device, and D2, D3 mobile. These
devices all have paired previously, so keys
k12, k13 and k23 exist. Still the recent key

7



k12 is waiting to be amplified. Now, when
D2 meets D3, it will give a list of peers that
it wants amplification for, amongst those D1.
As D3 has a key for D1, it will accept a
packet Ek23(D1, D2, N1) and return the re-
ply to D2 in the form Ek13(D1, D2, N1), D3.
Now D2 can carry this cached amplification
back to D1, and if k13 has not changed in
between (possibly the key between D1 and
D3 is also being amplified), the amplifica-
tion can be carried out, and a new key (e.g.
k′
12 = Ek12(N1)) can be constructed and val-

idated between devices D1 and D2. The end
result of the amplification is equivalent to the
original case - if k23 was safe, then k13 will
now also be, otherwise no change occured in
the secrecy.

The strategy of cached amplifications need
not be restricted to fixed devices, it can also
be used for any device in the network to im-
prove key confidentiality.

6 Environment monitor-

ing

A commonality that is present in peer-to-
peer mobile networks is that devices will
make the presence known to peers for the
sake of enabling incoming conenctions. This
strategy is often named advertising. Consid-
ering the amplification algorithm in the time
domain, the initial assumption was only that
the attacker cannot follow the mobile devices
long enough to keep track of the pairing pro-
cess. Additionally the devices that are estab-
lishing the key can make use of the changing
environment by making a log of device ad-
dresses that are visible during the intervals
where the key establishment process is idle.

Because the list of visible device might not be
end up to be equivalent, the following strat-
egy could be used (this sequence is combined
with the actual key amplification):

D1 D2

ADDR_1/LOW_BITS

------------------------->

if ADDR_1 found

k’ = E(k, ADDR_1)

else k’ = k

ADDR_2/LOW_BITS,

E(k’,ADDR_2/LOW_BITS)

<------------------------

determine k’

if ADDR_2 found

k’’ = E(k’, ADDR_2)

else k’’ = k’

where the lengths of the address parts and
checksums can be set to quite short (2 bytes
each) as the protocol will catch ambiguity
and protection against active attacks (like
the attacker actually producing most of the
visible address content) is limited.

7 Conclusions

In parallel with more efficient versions of
mainstream security (e.g. ECC chips), wire-
less communication, e.g. through RFID tech-
nologies, is hosted by evermore smaller and
cheaper devices (advertisments, name tags,
..). Whereas communication confidentiality
and integrity is relatively easy to arrange
for communication between these kind of
devices, in the problem area of key estab-
lishment simple solutions, tailored to spe-
cific communication domains and using avail-
able cryptographic services will remain more
cost effective than mainstream pairing al-
gorithms. This paper adds to this toolset
by summarizing some of the design criteria

8



present in the domain, and presenting a few
new ideas and methods for establishing key
material in truly constrained devices.

9



References

[1] Ross Anderson, Chan Haowen, and
Adrian Perrig. Key infection: Smart
trust for smart dust, 2001.

[2] Guido Bertoni, Luca Breveglieri, and
Matteo Venturi. Ecc hardware copro-
cessors for 8-bit systems and power con-
sumption considerations. itng, 0:573–
574, 2006.

[3] L. Eschenauer and V. Gligor. A key
management scheme for distributed sen-
sor networks, 2002.

[4] M. Feeney, L.M.; Nilsson. Investigat-
ing the energy consumption of a wireless
network interface in an ad hoc network-
ing environment. In INFOCOM 2001.
Twentieth Annual Joint Conference of
the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE ,
vol.3, no.pp.1548-1557 vol.3, 2001.

[5] J.; Rijmen V. Feldhofer, M.; Wolkerstor-
fer. Aes implementation on a grain of
sand. In Information Security, IEE Pro-
ceedings , vol.152, no.1pp. 13- 20, Oct.,
2005.

[6] V Agarwal S Keckler D Burger H Han-
son, S Hrishikesh. Static energy re-
duction techniques for microprocessor
caches. IEEE Transactions on VLSI
Systems, 11(3), June 2003.

[7] A Haowen Chan; Perrig. Pike: Peer
intermediaries for key establishment in
sensor networks. In INFOCOM 2005.
24th Annual Joint Conference of the
IEEE Computer and Communications
Societies. Proceedings IEEE , vol.1,

no.pp. 524- 535 vol. 1, 13-17 March,
2005.

[8] A.P. Charndrakasan J Goodman. An
energy-efficient reconfigurable public-
key cryptography processor. IEEE
Journal of Solid-state Circuits, 36(11),
Nov 2001.

[9] I. Kanter, W. Kinzel, and E. Kanter.
Secure exchange of information by syn-
chronization of neural networks. Euro-
physics Letters, 57:141, 2002.

[10] C Rechberger M Feldhofer. A case
against currently used hash functions in
rfid protocols. Workshop on RFID Se-
curity 2006 - RFIDSec06, July 13-14,
Graz, Austria.

[11] N.H. Miller, M.J.; Vaidya. Minimiz-
ing energy consumption in sensor net-
works using a wakeup radio. In Wireless
Communications and Networking Con-
ference, 2004, 2004.

[12] Nachiketh R. Potlapally, Srivaths Ravi,
Anand Raghunathan, and Niraj K. Jha.
Analyzing the energy consumption of se-
curity protocols. In ISLPED ’03: Pro-
ceedings of the 2003 international sym-
posium on Low power electronics and
design, pages 30–35, New York, NY,
USA, 2003. ACM Press.

[13] Tijs van Dam and Koen Langendoen.
An adaptive energy-efficient mac proto-
col for wireless sensor networks. In Sen-
Sys ’03: Proceedings of the 1st inter-
national conference on Embedded net-
worked sensor systems, pages 171–180,
New York, NY, USA, 2003. ACM Press.

10



[14] Markus Volkmer and Sebastian Wallner.
Tree parity machine rekeying architec-
tures for embedded security.

11


	Introduction
	Cost
	Key establishment between sensors
	Probablistic key exchange
	PIKE
	Neural networks
	Key infection

	Time-domain amplification
	Fixed-device amplification
	Environment monitoring
	Conclusions

