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Introduction
Setting up a shared key in ad-hoc networkNo key hierarchyNo pre-shared secretsOrdinary users without any knowledge of securityprotocolsMana IV can be used to authenticate the negotiated key
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Communication Model
Out-of-Band channelsAuthentic, some times secretAdversary can read, delay and reorder messagesLow bandwidthIn-band channelsRouted via malicious adversaryAdversary can read, insert, delete and modifuy messagesDolev-Yao -adversary
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Key Establishment Protocols for First Connect
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Keyed hash functions
A hash function is εu-almost universal if given two inputsx0 6= x1: Pr [k ← K : h(x0, k) = h(x1, k)] ≤ εuA hash function is εu-almost XOR universal if for anyx0 6= x1 and yPr [k ← K : h(x0, k)⊕ h(x1, k) = y ] ≤ εu
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Keyed hash functionsSpecial notion needed when key is divided into twosub-keys: h :M×Ka ×Kb → TA hash function is (εa, εb)-almost regular w.r.t. thesub-keys if for each data x ∈M, tag y and sub-keysk̂a ∈ K, k̂b ∈ K:Pr [ka ← Ka : h(x , ka, k̂b) = y ] ≤ εaand Pr [kb ← Kb : h(x , k̂a, kb) = y ] ≤ εb
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Keyed hash functionsA hash function is εu-almost universal w.r.t. the sub-keyka if for any two data x0 6= x1 and kb, k̂b ∈ Kb:Pr [ka ← K : h(x0, ka, kb) = h(x1, ka, k̂b)] ≤ εuA hash function is strongly εu-almost universal w.r.t. thesub-key ka if for any (x0, kb) 6= (x1, k̂b) we havePr [ka ← K : h(x0, ka, kb) = h(x1, ka, k̂b)] ≤ εuHere εu, εa, εb ≥ 1
|T |If the equality holds, the word almost is skippedJukka Valkonen MANA IV Proof of Security



Commitment SchemesCommitment scheme Com is speci�ed by threealgorithms:Gen generates the public parameters pkCom takes pk and message and transforms them into acommit value c and a decommit value d :
M×R→ C ×DOpen opens the commitment: Open(c , d) = m for all

(c , d) =Com(m, r)Incorrect decommit value yields to special abort value ⊥Jukka Valkonen MANA IV Proof of Security



Commitment schemesA commitment scheme is (t, ε1)-hiding if any t-timeadversary A achieves advantage
A commitment scheme is (t, ε2)-binding if any t-timeadversary A achieves advantage
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Non-malleable commitment schemes�Intuitively, a commitment scheme is non-malleable, if given avalid commitment c, it is infeasible to generate relatedcommitments c1, . . . , cn that can be successfully opened afterseeing a decommitment value d .�An adversary is a quadruple A = (A1,A2,A3,A4) ofalgorithms, where A1...3 are active and A4 is a distinguisher1 The challenger draws two independent samplesx0 ← MGen, x1 ← MGen and computes a challengecommitment (c, d)← Compk(x0)2 Challenger sends c to A2 that computes a commitmentvector c1, . . . , cn. If some ci = c then Challenger stops Awith ⊥ Jukka Valkonen MANA IV Proof of Security



Non-malleable commitment schemes
3 Challenger sends d to A3 that must produce a validdecommitment vector d1, . . . , dn (yi = Openpk(ci , di)). Ifsome yi =⊥ A is stopped with ⊥.4 In World0 Challenger invokes A4(x0, y1, . . . , yn) withcorrect x0 and in World0 A4(x1, y1, . . . , yn)A commitment scheme is (t, ε)-non-malleable i� for any t-timeadversary A the advantage of distinguishing the two worlds isAdvnmCom(A) = |Pr [A4 = 0|World0]− Pr [A4 = 0|World1]|
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MANA IV1 Alice computes (c, d)← Compk(ka) for random ka ← Kand sends (ma, c) to Bob2 Bob chooses random kb ← K and sends (mb, kb) to Alice3 Alice sends d to Bob, who computes ka ← Openpk(c, d)and halts if ka =⊥. Both parties compute a test valueoob = h(ma‖mb, ka, kb) from the received messages4 Both parties accept (ma,mb) i� the local l -bit test valuesooba and oobb coincideh is a keyed hash function with sub-keys ka, kb where Ka is amessage space of commitment schemeJukka Valkonen MANA IV Proof of Security



Idea of the security proofThe idea is to go through all the strategies an adversary canuse to attack the protocol run. These includeAdversary attacks h by altering ma,mb, kb and possible dAttacks based on abnormal execution pathsThe attacker succeeds if Alice and Bob accept but
(ma, m̂b) 6= (m̂a,mb)
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Theorem 1: Statistically binding commitments
For any t, there exists τ = t +O(1) such that if Com is
(τ, ε1)-hiding, ε2-binding and (τ, ε3)-non-malleable and h is
(εa, εb)-almost regular and εu almost universal w.r.t. thesub-key ka then the MANA IV protocol is
(2ε1 + 2ε2 + ε3 + max{εa, εb, εu}, t)-secure.
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Theorem 2: Computationally binding commitments
For any t, there exists τ = 2t +O(1) such that if Com is
(τ, ε1)-hiding, (τ, ε2)-binding and (τ, ε3)-non-malleable and h is
(εa, εb)-almost regular and εu almost universal w.r.t. thesub-key ka then the MANA IV protocol is
(2ε1 + ε2 +

√
ε2 + ε3 + max{εa, εb, εu}, t)-secure.
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Lemma 1
For any t, there exists τ = t +O(1) such that if Com is
τ, ε1-hiding and (τ, ε2)-binding and h is εu-almost universalw.r.t. the sub-key ka, then for any t-time adversary A andinput data (ma,mb)Pr [d-forge ∧ norm ∧ c = ĉ ] ≤ εu · Pr [norm ∧ c = ĉ ] + ε1 + ε2
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ProofAssume a t-time algorithm A which violates the previousprobabilityLet's construct A∗ that wins the hiding game, i.e. given pkoutputs (x0, x1, σ) and afterwards after given a commitment csfor s ← {0, 1} is able to correctly guess the bit s1 Given pk, chooses ka, k∗a ← Ka as (x0, x1) and sends
(ka, k∗a , pk) to Challenger2 When Challenger replies cs for (cs , ds) = Compk(xs), A∗simulates a faithful execution of Mana IV with
α = (ma, cs) until A queries γ. A∗ stops the simulationand halts with ⊥ if there is a protocol failure ¬norm orc 6= ĉ3 If h(ma‖m̂b, ka, k̂b) = h(m̂a‖mb, ka, kb) and
(ma, m̂b) 6= (m̂a,mb) outputs guess s = 0, else s = 1Jukka Valkonen MANA IV Proof of Security



Proof continuedFor s = 0 we getPr [A∗ = 0|s = 0] ≥ Pr [d-forge ∧ norm ∧ c = ĉ ∧ ka = k̂a]For s = 1,Pr [A∗ = 0|s = 1] ≤ εu · Pr [norm ∧ c = ĉ ]as Pr [A∗ 6=⊥ |s = 1] = Pr [norm ∧ c = ĉ] (perfect simulationuntil A queries γ) and c1 and ka are statistically independent(Pr [A∗ = 0|s = 1,A∗ 6=⊥] ≤ εu)Jukka Valkonen MANA IV Proof of Security



Proof continued
We getAdvhid(A∗) = |Pr [A∗ = 0|s = 0]− Pr [A∗ = 0|s = 1]| ≥
|Pr [d-forge∧norm∧c = ĉ∧ka = k̂a]−εu ·Pr [norm∧c = ĉ ]| > ε1which contradicts the (τ, ε1)-hiding property. HerePr [d-forge ∧ norm ∧ c = ĉ ∧ ka = k̂a] ≥Pr [d-forge ∧ norm ∧ c = ĉ]− ε2 and the assumption that Aviolates the inequality
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Lemma 2
For any t, there exists τ = t +O(1) such that if Com is
(τ, ε3)-non-malleable and h is (εa, εb)-almost regular, then forany t-time adversary A and inputs (ma,mb)Pr [d-forge ∧ norm ∧ c 6= ĉ ] ≤ εa · Pr [norm ∧ c 6= ĉ ] + ε3
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ProofNow, A is a t-time algorithm that violates the inequality. Ideais to build an adversary A∗ = (A∗1,A∗2,A∗3,A∗4) that can breakthe non-malleability of the commitment scheme.1 Given pk, A∗1 outputs a sampler over Ka and state
σ1 = (pk,ma,mb). Challenger computes x0, x1 ← Ka and
(c, d)← Compk(x0)2 Given c, σ1,A∗2 simulates the protcol with kb ← Kb andstops before A demands γ. A∗ stops and halts with ⊥ ifthere is a protocol failure ¬norm or c = ĉ. Otherwise A∗2outputs a commitment ĉ and σ2 containing enoughinformation to resume the simulation.Jukka Valkonen MANA IV Proof of Security



Proof continued
3 Given d , σ2,A∗3 resumes the simulation and outputs d̂4 If A∗3 was successful in opening ĉ then A∗(xs , u, σ2) setska ← xs and k̂a ← y and computesooba = h(ma‖m̂b, ka, k̂b) and oobb = h(m̂a‖mb, k̂a, kb).A∗4 outputs a guess s = 0 if ooba = oobb but

(ma, m̂b) 6= (m̂a,mb), else s = 1.
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Proof continuedNow, in World0, Step 1 provides perfect simulation and inWorld1 ka is independent of all variables computed by A. ThusPr [A∗4 = 0|World0] = Pr [d-forge ∧ norm ∧ c 6= ĉ ]and Pr [A∗4 = 0|World1] = εa · Pr [norm ∧ c 6= ĉ ]as h is (εa, εb)-almost regular.This results as a contradiction asAdvnm(A∗) = |Pr [A∗ = 0|World0]− Pr [A∗ = 0|World1| > ε3Jukka Valkonen MANA IV Proof of Security



Lemma 3
For any t, there exists τ = t +O(1) such that if Com is
(τ, ε1)-hiding, h is (εa, εb)-almost regular. Then for any t-timeadversary A and input (ma,mb)Pr [d-forge ∧ γ̂ ≺ β̂] ≤ ε1 + εa · Pr [γ̂ ≺ β̂]
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ProofAgain, let A be a t-time adversary that violates the previousinequlity. If γ̂ ≺ β̂, Bob'c control value oobb is �xed before Areceives γ. Now we have A∗ that plays hiding game1 Given pk, chooses ka, k∗a ← Ka as (x0, x1) and sendska, k∗a , pk to Challenger2 When Challenger replies cs for (cs , ds) = Compk(xs), A∗simulates an execution of Mana IV with α = (ma, cs)until A outputs β̂. A∗ stops the simulation and halts with
⊥ if there is a protocol failure: β̂ ≺ γ̂ or Openpk =⊥.3 A∗ computes k̂a = Openpk(ĉ , d̂),ooba = h(ma‖m̂b, ka, k̂b) and oobb = h(m̂a‖mb, k̂a, kb). Ifooba = oobb and (ma, m̂b) 6= (m̂a,mb) outputs 0 else 1Jukka Valkonen MANA IV Proof of Security



Proof continuedIf s = 0 then Pr [A∗ = 0|s = 0] = Pr [d-forge ∧ γ̂ ≺ β̂].If s = 1 then Pr [A∗ = 0|s = 1] = εa · Pr [γ̂ ≺ β̂] asPr [A∗ 6=⊥ |s = 1] = Pr [γ̂ ≺ β̂] andPr [A∗ = 0|s = 0,A∗ 6=⊥] ≤ εa because of (εa, εb)-almostregularityThe advantage isAdvhid(A∗) = |Pr [A∗ = 0|s = 0]− Pr [A∗ = 0|s = 1]| > ε1which results in a contradictionJukka Valkonen MANA IV Proof of Security



Lemma 4
If Com is statistically ε2-binding and h is (εa, εb)-almostregular, then for each adversary A and input (ma,mb)Pr [d-forge ∧ γ ≺ β] ≤ ε2 + εb · Pr [γ ≺ β]
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Proof
For each ĉ �x a canonical k̂a such that k̂a = Openpk(ĉ, d̂0) forsome d̂0. If γ ≺ β the ooba is �xed before kb. Now theprobability that di�erent kb values lead to di�erent openingsk ′a 6= k̂a is at most ε2. Otherwise, one can �nd valid doubleopenings Openpk(ĉ , d̂0) 6= Openpk(ĉ, d̂1) just by enumeratingall possible protocol runs. NowPr [kb ← K : ooba = h(m̂a‖mb, k̂a, kb)] ≤ εb, as kb isindependent from k̂a and ooba and thus claim follows.
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Lemma 5
For any t there exists τ = t +O(1) such that if Com is
(τ, ε2)-binding and h is (εa, εb)-almost regular, then for anyt-time adversary A and inputs ma,mbPr [d-forge ∧ γ ≺ β] ≤ εb · Pr [γ ≺ β] +

√
ε2Proof omitted
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Thus
by summing up the probabilities the proof is complete
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