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Introduction

@ Setting up a shared key in ad-hoc network

o No key hierarchy

o No pre-shared secrets

o Ordinary users without any knowledge of security
protocols

@ Mana IV can be used to authenticate the negotiated key
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Communication Model

@ Out-of-Band channels
o Authentic, some times secret
o Adversary can read, delay and reorder messages
o Low bandwidth
@ In-band channels
o Routed via malicious adversary
o Adversary can read, insert, delete and modifuy messages
o Dolev-Yao -adversary
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Key Establishment Protocols for First Connect

Key establishment
[

P1: OOB key transfer Key agreement

Asymmetric crypto ‘ Symmetric crypto only ‘
[ \
P2: Unauthenticated ‘ Authenticated ‘ P9: Unauthenticated P10: Authenticated
[
[ I ]
‘ Authentication by integrity checking ‘ ‘ Authentication by shared secret ‘ P8: Hybrid One-way OOB

P3: OOB exchange of key commitments ‘ (Short) integrity checksum

|P4: User-assistedl |P5: 00B transferl IF‘6: User—assistedl IP7: OOB transfer
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Keyed hash functions

@ A hash function is ¢,-almost universal if given two inputs
Xo # X1

Prlk < K : h(xo, k) = h(x1, k)] < €,

@ A hash function is €,-almost XOR universal if for any
Xo # x1 and y

Prlk < K : h(xo, k) ® h(x1, k) = y] < e,
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Keyed hash functions

@ Special notion needed when key is divided into two
sub-keys: h- M x K, x Kp — T
@ A hash function is (e,, €p)-almost regular w.r.t. the

iub—keysAif for each data x € M, tag y and sub-keys
k, e IC, ky € K:

Prlk, — K, : h(x, ka,/l;b) =y| <e

and R
Prlky < Kp : h(x, ka, kp) = y] < €5
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Keyed hash functions

@ A hash function is €,-almost universal w.r.t. the sub-key
k, if for any two data xy # x; and k, k, € Kp:

Prik, — K : h(xo, ks, kp) = h(x1, ka, kb)] < €u

@ A hash function is strongly eu—a/moit universal w.r.t. the
sub-key k, if for any (xo, kp) # (x1, kp) we have

Prik, — K : h(xo, ks, kp) = h(x1, ka, kb)] < €u
@ Here ¢,,¢€,, €5 > %
@ If the equality holds, the word almost is skipped
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Commitment Schemes

@ Commitment scheme Com is specified by three
algorithms:

o Gen generates the public parameters pk
o Com takes pk and message and transforms them into a
commit value ¢ and a decommit value d:

MxR—-CxD

o Open opens the commitment: Open(c,d) = m for all
(c,d) =Com(m,r)

@ Incorrect decommit value yields to special abort value L
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Commitment schemes

@ A commitment scheme is (t, ¢;)-hiding if any t-time
adversary A achieves advantage

= e

) pk — Gen, s — {0.1} . (xg, zq1.0) — A(pk) 1
Aot _ 9. ) . L
Advion(4) =21 |:(e‘s. dy) — Complx,): Alo,e,)=s 2

@ A commitment scheme is (¢, €;)-binding if any t-time
adversary A achieves advantage

Advi (4) = Pr pk '— Gen, (e, dp, d“. — A(pk) : |
L # Open,(e.do) # Open, (e.di) # L

Com I
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Non-malleable commitment schemes

“Intuitively, a commitment scheme is non-malleable, if given a
valid commitment c, it is infeasible to generate related
commitments cy, ..., ¢, that can be successfully opened after
seeing a decommitment value d.”

An adversary is a quadruple A = (A, Az, As, Ay) of
algorithms, where A; 3 are active and A, is a distinguisher

1 The challenger draws two independent samples
Xo < MGen, x; < MGen and computes a challenge
commitment (c, d) < Comy(xo)

2 Challenger sends ¢ to A, that computes a commitment
vector ci, ..., c,. If some ¢; = ¢ then Challenger stops A
with L
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Non-malleable commitment schemes

3 Challenger sends d to Az that must produce a valid
decommitment vector di, ..., d, (yi = Open,(c;, d;)). If
some y; =1 A is stopped with L.

4 In Worldy Challenger invokes A4(xo, y1,-- -, yn) with
correct xo and in Worldg Aq(x1, y1, ..., ¥n)

A commitment scheme is (t, €)-non-malleable iff for any t-time
adversary A the advantage of distinguishing the two worlds is

Adviom(A) = |Pr[As = 0|Worldo] — Pr[As = 0|World,]|

Com
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MANA [V

O Alice computes (c, d) « Compk(ka) for random k, — K
and sends (m,, ¢) to Bob

© Bob chooses random k, «— KC and sends (my, kp) to Alice

© Alice sends d to Bob, who computes k, < Openpk(c, d)

and halts if k, =1. Both parties compute a test value
oob = h(my,||my, k,, kp) from the received messages

@ Both parties accept (m,, mp) iff the local /-bit test values
oob, and oob,, coincide

h is a keyed hash function with sub-keys k,, k, where I, is a
message space of commitment scheme
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|dea of the security proof

The idea is to go through all the strategies an adversary can
use to attack the protocol run. These include

@ Adversary attacks h by altering m,, my, k;, and possible d
@ Attacks based on abnormal execution paths
The attacker succeeds if Alice and Bob accept but

(ma> ’7777) 7& (ﬁe’h mb)

Adversary A* that simulates original protocol

—
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Fig. 4. Generic reduction scheme
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Theorem 1: Statistically binding commitments

For any t, there exists T = t + O(1) such that if Com is
(7, €1)-hiding, ex-binding and (7, €3)-non-malleable and h is
(€2, €p)-almost regular and €, almost universal w.r.t. the
sub-key k, then the MANA |V protocol is

(2€1 + 2€3 + €3 + max{e,, €p, €, }, t)-secure.
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Theorem 2: Computationally binding commitments

For any t, there exists T = 2t + O(1) such that if Com is

(7, €1)-hiding, (7, €3)-binding and (7, e3)-non-malleable and h is
(€2, €p)-almost regular and €, almost universal w.r.t. the
sub-key k, then the MANA IV protocol is

(261 + €2+ /€2 + €3 + max{e,, €p, €, }, t)-secure.
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For any t, there exists T = t + O(1) such that if Com is
T, €1-hiding and (7, €2)-binding and h is €,-almost universal
w.r.t. the sub-key k,, then for any t-time adversary A and
input data (m,, mp)

Pr[d-forge A norm A ¢ =¢| <€, - Pr[norm A c =¢| + €1 + €

Jukka Valkonen MANA |V Proof of Security



Assume a t-time algorithm A which violates the previous
probability

Let's construct A* that wins the hiding game, i.e. given pk
outputs (xo, x1,0) and afterwards after given a commitment ¢
for s < {0,1} is able to correctly guess the bit s
© Given pk, chooses k,, kI — IC; as (xp, x1) and sends
(ka, k%, pk) to Challenger
@ When Challenger replies ¢ for (cs, ds) = Compk(xs), A*
simulates a faithful execution of Mana IV with
a = (m,, ¢s) until A queries . A* stops the simulation
and halts with L if there is a protocol failure —norm or
c#¢C
O If h(m,||mp, ka, kb) = h(m,||mp, ka, kp) and
(ma, mp) # (m,, mp) outputs guess s =0, else s =1
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Proof continued

For s = 0 we get

Pr[A* = 0|s = 0] > Pr[d-forge Anorm Ac=CAk, = /k\a]
For s =1,
Pr[A* = 0|s = 1] < €, - Pr[norm A ¢ = ¢|
as Pr[A* #L |s = 1] = Pr[norm A ¢ = ¢| (perfect simulation

until A queries ) and ¢; and k, are statistically independent
(Pr[A*=0|s =1,A* #1] <¢,)
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Proof continued

We get
AdVd(47) = | Pr[A* = 0]s = 0] — Pr[A" = O|s = 1]| >

|Pr[d-forgeAnormAc = cAk, = /l;a]—eu-Pr[norm/\c =7l > &

which contradicts the (7, €;)-hiding property. Here
Pr[d-forge Anorm A c =C Ak, = Ea] >

Pr[d-forge A norm A ¢ = ¢] — €; and the assumption that A
violates the inequality
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For any t, there exists T = t + O(1) such that if Com is
(7, €3)-non-malleable and h is (€., €p)-almost regular, then for
any t-time adversary A and inputs (m,, mp)

Pr[d-forge A norm A ¢ #¢] < €, - Pr[norm A\ ¢ # C] + €3
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Now, A is a t-time algorithm that violates the inequality. Idea
is to build an adversary A* = (A}, A3, A}, A;) that can break
the non-malleability of the commitment scheme.

1 Given pk, A} outputs a sampler over K, and state
o1 = (pk, m,, mp). Challenger computes xg, x; < K, and
(c,d) Compk(xo)

2 Given c, 0y, A3 simulates the protcol with k, < K, and
stops before A demands . A* stops and halts with L if
there is a protocol failure =norm or ¢ =¢. Otherwise A}
outputs a commitment ¢ and o, containing enough
information to resume the simulation.
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Proof continued

3 Given d, 03,A3 resumes the simulation and outputs d

4 If A} was successful in opening ¢ then A*(xs, u, 0,) sets
k; < xs and k —y and computes
oob, = h(m,||my, k,, kb) and ooby, = h(m,||m,, ka, kp).
Aj outputs a guess s = 0 if oob, = oob, but
(ma, mp) # (Ma, mp), else s = 1.
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Proof continued

Now, in Worldy, Step 1 provides perfect simulation and in
World; k, is independent of all variables computed by A. Thus

Pr[A; = 0|Worldy] = Pr[d-forge A norm A ¢ # ¢]

and
Pr[A; = 0|World;] =€, - Pr[norm A ¢ # €]

as h is (€,, €p)-almost regular.

This results as a contradiction as

Adv"™(A*) = |Pr[A* = O[Worldy] — Pr[A* = 0|World;| > €3
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For any t, there exists T = t + O(1) such that if Com is
(7, €1)-hiding, h is (€., €p)-almost regular. Then for any t-time
adversary A and input (m,, mp)

Pr[d-forge A7 < B] < &1 + €, - Pr[7 < ]
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Again, let A be a t-time adversary that violates the previous
inequlity. If ¥ < 3, Bob'c control value ooby,, is fixed before A
receives 7. Now we have A* that plays hiding game

© Given pk, chooses k,, ki <« K, as (xo, x;) and sends
ka, k, pk to Challenger

© When Challenger replies ¢ for (cs, ds) = Compk(xs), A*
simulates an execution of Mana IV with a = (m,, ¢;)

until A outputs B A” stops the simulation and halts with
L if there is a protocol failure: 5 <7 or Openpk =1.

© A* computes Ea = Openpk(é, cAf)

00ba = h(m, ||, ks, ks) and oob, = h(,||mp, ks, ks). If
ooba = ooby, and (m,, mp) # (m,, mp) outputs 0 else 1
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Proof continued

If s =0 then Pr[A* = 0|s = 0] = Pr[d-forge AT < [3].
If s =1 then Pr[A* =0|s =1] =¢,- Pr[y <[] as

Pr[A* #1 |s = 1] = Pr[¥ < /3] and

Pr[A* = 0]s = 0, A* #1] < ¢, because of (e,, €5)-almost
regularity

The advantage is

Advhld(A*) _ |PI‘[A* — O|5 = O] — Pr[A* = O‘S = 1]| > €6

which results in a contradiction
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If Com is statistically e-binding and h is (e,, €p)-almost
regular, then for each adversary A and input (m,, mp)

Prld-forge Ny < 8] < €2+ €p - Prly <[]
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For each ¢ fix a canonical 7(\3 such that Ea = Openpk(?, 90) for
some 30. If v < 3 the oob, is fixed before k,. Now the
probability that different k, values lead to different openings
k! #+ Ea is at most €,. Otherwise, one can find valid double
openings Openpk(E, 90) + Openpk(E, 91) just by enumerating
all possible protocol runs. Now

Prik, < K : oob, = h(,||mp, ky, ks)] < €5, as ky is
independent from l?a and oob, and thus claim follows.
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For any t there exists T = t + O(1) such that if Com is
(7, €2)-binding and h is (e,, €p)-almost regular, then for any
t-time adversary A and inputs m,, my

Pr(d-forge Ay < 3] < €y - Pr[y < (] + Ve2

Proof omitted
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by summing up the probabilities the proof is complete
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