Formal specification of authentication protocols

Olli Pottonen olli.pottonen@tkk.fi

29.11.2007 (revised 3.12.2007)

T-79.5502 Advanced Course in Cryptology

Overview

- Proper use of cryptographic transformations (17.2)
- Formal specification and security proofs (17.3)

Cryptographic transformations

- **Encryption**: confidentiality, no data integrity (usually)
- Message M, key K: $\{M\}_K$
- Many authentication protocols misuse encryption.

Authentication via encryption-decryption

Example: Needham-Schroeder Public-Key Authentication Protocol:

- 1. Alice \rightarrow Bob: $\{N_A, Alice\}_{K_B}$
- 2. Bob \rightarrow Alice: $\{N_A, N_B\}_{K_A}$
- 3. Alice \rightarrow Bob: $\{N_B\}_{K_B}$

Underlying assumption: only Alice can decrypt messages $\{M\}_{K_A}$, and only Bob messages $\{M\}_{K_B}$.

Lowe's attack

- 1. Alice \rightarrow Malice: $\{N_A, Alice\}_{K_M}$
- 1'. Malice("A") \rightarrow Bob: $\{N_A, Alice\}_{K_B}$
- 2'. Bob \rightarrow Malice("A"): $\{N_A, N_B\}_{K_A}$
- 2. Malice \rightarrow Alice: $\{N_A, N_B\}_{K_A}$
- 3. Alice \rightarrow Malice: $\{N_B\}_{K_M}$
- 3'. Malice("A") \rightarrow Bob: $\{N_B\}_{K_B}$

Result: Bob mistakes Malice for Alice.

Harmfulness of encryption-decryption

Alice acts as an decryption/encryption oracle, which Malice can use for breaking security.

Encryption does not provide data integrity

- Encryption is usually carried out block at a time.
- Malice may change some of the blocks and leave others untouched.
- For example, consider CBC: $C_0 \leftarrow IV$; $P_i \leftarrow \mathcal{D}(C_i) \oplus C_{i-1}$.
- If Malice changes block C_i , the decrypted blocks P_i and P_{i+1} are affected.
- P_{i+1} changes in predictable way.
- Malice needs encryption oracle to change also P_i in predictable way.

Back to Cryptographic transformations

- **Encryption**: confidentiality, no data integrity (unless non-malleable)
- Message M, key K: $\{M\}_K$
- **One-way transform** (MAC, digital signature): data integrity and message source identification, no confidentiality
- Message M, key K: $[M]_K$
- We assume $[M]_K = (M, prf_K(M))$, where prf_K is a keyed pseudorandom function.

Needham-Schroeder revisited

How to fix Needham-Schroeder Public-key Authentication Protocol:

- 1. Alice \rightarrow Bob: $[\{N_A\}_{K_B}, Alice]_{K_A}$
- 2. Bob \rightarrow Alice: $[\{N_A, N_B\}_{K_A}]_{K_B}$
- 3. Alice \rightarrow Bob: $[\{N_B\}_{K_B}]_{K_A}$

Formal specification of authentication protocols - the Bellare-Rogaway Model

- Honest participant: polynomial-time function $\Pi(1^k, i, j, K, conv, r)$, where
 - -k: the security parameter (key size)
 - * Computation must be polynomial-time with respect to 1^k
 - -i: identity of the participant
 - *j*: identity of the intended communication partner
 - K: long-lived symmetric key shared by i and j
 - conv: conversation, i.e., concatenation of all sent and received messages
 - r: random input generated by the participant

Formal specification (cont.)

- Execution of $\Pi(1^k, i, j, K, conv, r)$ yields
 - m: the message sent out $m \in \{0,1\}^* \cup \{\text{no output}\}$
 - σ : decision $\sigma \in \{\text{Accept}, \text{Reject}, \text{Undecided}\}$
 - α : the private output $\alpha \in \{0,1\}^* \cup \{\text{no output}\}$
- $\Pi_{i,j}^s$ denotes participant i attempting to authenticate j in a session labeled by s.

Formal specification: Malice

- Malice has unlimited access to *oracles* $\Pi_{i,j}^s, \Pi_{j,i}^t$, with values of i, j, s, t, conv supplied by Malice.
- The key K and random values r not known by Malice.
- Malice gets message m and decision δ , not private input α .

Formal specification: security definition

- Matching conversations: The messages received by $\Pi_{i,j}^s$ were sent by $\Pi_{i,i}^t$ in the correct order, and vice versa.
- $conv = (\tau_0, "'', m_1), (\tau_2, m'_1, m_2), \dots, (\tau_{2t-2}, m'_t, m_t)$ and $conv' = (\tau_1, m_1, m'_1), (\tau_3, m_2, m'_2), \dots, (\tau_{2t-1}, m_t, "'')$ are matching (here Alice sends the first and last messages).
- Malice wins, if $\Pi_{i,j}^s$ and $\Pi_{j,i}^t$ accept while not having matching conversations.
- Protocol is secure, if probability of Malice winning in polynomial time is negligible.

MAP1

Mutual Authentication Protocol 1 (MAP1):

- 1. Alice \rightarrow Bob: $A \parallel R_A$
- 2. Bob \rightarrow Alice: $[B \parallel A \parallel R_A \parallel R_B]_K$
- 3. Alice \rightarrow Bob: $[A \parallel R_B]_K$

Recall that $[M]_K = (M, prf_K(M))$. K, R_A , R_B and $prf_K(M)$ have length $\Omega(k)$.

Proof of security

- First assume that $[M]_K = (M, rf_K(M))$, where rf_K is a truly random function.
- Alice accepts only if she sent A || R_A and received [B || A || R_A || R_B]_K. Malice can guess rf_K(B || A || R_A || R_B) with negligible probability ⇒ rf_K(B || A || R_A || R_B) was computed by Bob ⇒ Bob received A || R_A and sent [B || A || R_A || R_B]_K.
- Bob received $A \parallel R_A$ and sent $[B \parallel A \parallel R_A \parallel R_B]_K$. He accepts only if he receives $[A \parallel R_B]_K$. In that case the conversations are matching.

Proof of security (cont.)

- Now consider pseudorandom function prf_K . By definition, a secure pseudorandom function prf_K can not be distinguished from a truly random rf_K with non-negligible advantage.
- Consider the following algorithm for distinguishing prf_K and rf_K :
 - Charlie is given function g_K . He lets $[M]_K = (M, g_K(M))$ and simulates Malice and the oracles in the MAP1 protocol with function g_K . The assumption is that Malice succeeds in MAP1 with $g_K = prf_K$ with non-negligible probability, but if $g_K = rf_K$, then Malice's chances are negligible. If Malice wins, Charlies guesses "pseudorandom", otherwise Charlie guesses "random".

Proof of security (cont.)

• Now Charlie's advantage is Adv(Charlie)

 $= |P(guess = pseudornd, g_K = prf_K) - P(guess = pseudornd, g_K = prf_K)|$

$$= |P(g_{K} = prf_{K})P(guess = pseudornd|g_{K} = prf_{K})$$

$$-P(g_{K} = rf_{K})P(guess = pseudornd|g_{K} = rf_{K})|$$

$$= \frac{1}{2}|P(\text{Malice wins in MAP1}|g_{K} = prf_{K}) - P(\text{Malice wins in MAP1}|g_{K} = rf_{K})|$$

$$= \frac{1}{2}|p_{p}(k) - p_{r}(k)|,$$

where $m_{r}(k) = P(\text{Malice wing in MAP1}|g_{K} = mrf_{K}) \text{ and } m_{r}(k) =$

where $p_p(k) = P(\text{Malice wins in MAP1}|g_K = prf_K)$ and $p_r(k) = P(\text{Malice wins in MAP1}|g_K = rf_K)$.

Proof of security (cont.)

- By the first part of the proof, $p_r(k)$ is negligible. Hence, if $p_p(k)$ is non-negligible, then Adv(Charlie) is non-negligible, as shown on the next slide.
- So we have shown that since MAP1 is secure with truly random function, then MAP1 is also secure with pseudorandom function prf_K , for otherwise MAP1 could be used to construct an efficient algorithm for distinguishing between pseudorandom and random functions.

Proof of security (technical details)

- We must yet show that $|p_r(k) p_p(k)|$ is non-negligible when $p_r(k)$ is negligible and $p_p(k)$ is not. Recall that function f is negligible if 1/f(k) is not polynomially bound.
- Since $1/p_p(k)$ is polynomially bound and $1/p_r(k)$ is not, $1/p_p(k) \leq \frac{1}{2}1/p_r(k)$ for large enough k. Thus for large enough k, $p_r(k) \leq \frac{1}{2}p_p(k)$, and $Adv(\text{Charlie}) = \frac{1}{2}|p_r(k) - p_p(k)| \geq \frac{1}{4}p_p(k)$, which is non-negligible.