Formal and Strong Security Definitions:
Digital Signatures

We know everything about nothing
and nothing about everything ...

Sven Laur
swen@math.ut.ee

Helsinki University of Technology
Basic theoretical notions
Formal syntax of a signature scheme I

Various domains associated with the signature scheme:

\(\mathcal{M} \) – a set of plausible messages;

\(S \) – a set of possible signatures;

\(R \) – random coins used by the signing algorithm.

Parameters used by the signing and verification algorithms:

\(pk \) – a public key (public knowledge needed to verify signatures);

\(sk \) – a secret key (knowledge that allows efficient creation of signatures).
Formal syntax of a signature scheme II

Algorithms that define a signature scheme:
\(\mathcal{G} \) – a randomised key generation algorithm;
\(\mathcal{S}_{sk} \) – a randomised signing algorithm;
\(\mathcal{V}_{pk} \) – a deterministic verification algorithm.

The key generation algorithm \(\mathcal{G} \) outputs a key pair \((pk, sk) \).
The signing algorithm is an efficient mapping \(\mathcal{S}_{sk} : \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{S} \).
The verification algorithm is an efficient predicate \(\mathcal{V}_{pk} : \mathcal{M} \times \mathcal{S} \rightarrow \{0, 1\} \).

A signature scheme must be functional

\[
\forall (pk, sk) \leftarrow \mathcal{G}, \; \forall m \in \mathcal{M}, \; \forall r \in \mathcal{R} : \; \mathcal{V}_{pk}(m, \mathcal{S}_{sk}(m; r)) = 1 .
\]
Example. RSA-1024 signature scheme

Key generation G:
1. Choose uniformly 512-bit prime numbers p and q.
2. Compute $N = p \cdot q$ and $\phi(N) = (p - 1)(q - 1)$.
3. Choose uniformly $e \leftarrow \mathbb{Z}_{\phi(N)}^*$ and set $d = e^{-1} \bmod \phi(N)$.
4. Output $sk = (p, q, e, d)$ and $pk = (N, e)$.

Signing and verification:

$$M = \mathbb{Z}_N, \quad S = \mathbb{Z}_N, \quad R = \emptyset$$

$$S_{sk}(m) = m^d \bmod N$$

$$V_{pk}(m, s) = 1 \iff m = s^e \bmod N.$$
When is a signature scheme secure?

Signature schemes like cryptosystems have many applications and thus the corresponding security requirements are quite diverse.

- **Key only attack.** Given \(\text{pk} \), the adversary creates a valid signature \((m, s)\) in a *feasible* time with a *reasonable* probability.

- **One more signature attack.** Given \(\text{pk} \) and a list of valid signatures \((m_1, s_1), \ldots, (m_n, s_n)\), the adversary creates a new valid signature \((m_{n+1}, s_{n+1})\) in a *feasible* time with a *reasonable* probability.

- **Universal forgery.** The adversary must create a valid signature for a message \(m \) that is chosen from some prescribed distribution \(M_0 \).

- **Existential forgery.** The adversary must create a valid signature for any message \(m \), i.e., there are no limitations on the message.
Standard attack model

Normally a signature scheme must be secure against existential forgeries and against chosen message attack:

1. Challenger generates \((\mathsf{pk}, \mathsf{sk}) \leftarrow \mathcal{G}\) and sends \(\mathsf{pk}\) to Malice.
2. Malice adaptively queries signatures for messages \(m_1, \ldots, m_n\).
3. Using \(\mathsf{pk}\) and a list of queried signatures \((m_1, s_1), \ldots, (m_n, s_n)\) Malice creates and sends a candidate signature \((m_{n+1}, s_{n+1})\) to Challenger.
4. Challenger outputs \(1\) only if \(\mathcal{V}_{\mathsf{pk}}(m_{n+1}, s_{n+1}) = 1\) and the candidate signature \((m_{n+1}, s_{n+1})\) is not in the list \((m_1, s_1), \ldots, (m_n, s_n)\).

Success probability

\[
\text{Adv}^{\text{forge}}(\text{Malice}) = \Pr[\text{Challenger} = 1]
\]
Show the RSA signature scheme is insecure
What does it mean in practise?
Digital Signatures. Conceptual description

Digital signature is a non-interactive version of the following protocol:

1. Charlie sends a message m to Alice.
2. Alice authenticates herself by proving that
 - she knows the secret key sk,
 - she agrees with the message m.

Differently from the protocol the digital signature must be transferable:
\Rightarrow The signature must be verifiable by other persons.

Fiat-Shamir heuristics converts any sigma-protocol to a signature scheme by replacing the second message with a cleverly chosen hash value.
Fiat-Shamir heuristics

\[
\begin{align*}
\alpha \leftarrow \mathcal{R} & \quad \beta \leftarrow \mathcal{C} \\
\text{sk} & \quad \gamma \\
\end{align*}
\]

If \(\mathcal{V}_{pk}(\alpha, \beta, \gamma) = 1 \) then
- Alice passes the test.

Bob can efficiently create the protocol transcript by himself.

Since \(\beta = h(m, \alpha) \) then
- Charlie cannot cheat,
- the protocol is non-interactive,
- the protocol is transferable.

\[
\begin{align*}
\alpha \leftarrow \mathcal{R} & \\
\text{sk}, m & \\
\beta = h(m, \alpha) & \\
\gamma & \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{V}_{pk}(\alpha, \beta, \gamma) \land h(m, \alpha) \overset{?}{=} \beta
\end{align*}
\]
What are the main differences between these scenarios?

How to achieve equivalence between these different scenarios?
Sigma protocols. Zero-knowledge property

Schnorr identification protocol

Alice
- \(x \in \mathbb{Z}_q \)
- \(k \leftarrow \mathbb{Z}_q \)
- \(\alpha = g^k \)

Charlie
- \(y = g^x \)
- \(\beta \leftarrow \mathbb{Z}_q \)
- \(\gamma = k + \beta x \)
- \(g^\gamma = g^k g^{\beta x} \equiv \alpha y^\beta \)

Simulation Lemma

To generate a transcript \((\alpha, \beta, \gamma)\):
1. Choose \(\beta \leftarrow \mathbb{Z}_q \) and \(\gamma \leftarrow \mathbb{Z}_q \).
2. Compute \(\alpha = g^\gamma \cdot y^{-\beta} \).
3. Output \((\alpha, \beta, \gamma)\).

Simulation is perfect.
Sigma protocols. Special Soundness

Schnorr identification protocol

Alice
\[x \in \mathbb{Z}_q \]
\[k \leftarrow \mathbb{Z}_q \]
\[\alpha = g^k \]

\[\beta \]
\[\gamma = k + \beta x \]

Charlie
\[y = g^x \]
\[\beta \leftarrow \mathbb{Z}_q \]
\[g^\gamma = g^{k+\beta x} \equiv \alpha y^\beta \]

Knowledge-extraction Lemma

\[\beta \]
\[\alpha = g^k \]

\[\beta' \]
\[\gamma = k + \beta x \]
\[\gamma' = k + \beta' x \]

We can extract the secret key \(x = \frac{\gamma - \gamma'}{\beta - \beta'} \).
Let $A(r, c)$ be the output of Charlie(c) that interacts with Malice(r).

- Then all matrix elements in the same row $A(r, \cdot)$ lead to same α value.
- To extract the secret key sk, we must find two ones in the same row.
- We can compute the entries of the matrix on the fly.
Propose a randomised algorithm for this task!

Estimate the approximate complexity.
Classical algorithm

Rewind:
1. Probe random entries $A(r, c)$ until $A(r, c) = 1$.
2. Store the matrix location (r, c).
3. Probe random entries $A(r, \overline{c})$ in the same row until $A(r, \overline{c}) = 1$.
4. Output the location triple (r, c, \overline{c}).

Rewind-Exp:
1. Repeat the procedure Rewind until $c \neq \overline{c}$.
2. Use the Knowledge extraction lemma to extract sk.
Average case complexity I

Assume that the matrix contains ε-fraction of nonzero elements, i.e., Malice convinces Charlie with probability ε. Then on average we make

$$E[\text{probes}_1] = \varepsilon + 2(1 - \varepsilon)\varepsilon + 3(1 - \varepsilon)^2\varepsilon + \cdots = \frac{1}{\varepsilon}$$

matrix probes to find the first non-zero entry. Analogously, we make

$$E[\text{probes}_2| r] = \frac{1}{\varepsilon_r}$$

probes to find the second non-zero entry. Also, note that

$$E[\text{probes}_2] = \sum_r \Pr [r] \cdot E[\text{probes}_2| r] = \sum_r \frac{\varepsilon_r}{\sum_{r'} \varepsilon_{r'}} \cdot \frac{1}{\varepsilon_r} = \frac{1}{\varepsilon},$$

where ε_r is the fraction of non-zero entries in the r^{th} row.
Average case complexity II

As a result we obtain that the Rewind algorithm does on average

\[E[\text{probes}] = \frac{2}{\varepsilon} \]

probes. Since the Rewind algorithm fails with probability

\[\Pr[\text{failure}] = \frac{\Pr[\text{halting} \land c = \overline{c}]}{\Pr[\text{halting}]} \leq \frac{\kappa}{\varepsilon} \quad \text{where} \quad \kappa = \frac{1}{q} . \]

we make on average

\[E[\text{probes}^*] = \frac{1}{\Pr[\text{success}]} \cdot E[\text{probes}] \leq \frac{\varepsilon}{\varepsilon - \kappa} \cdot \frac{2}{\varepsilon} = \frac{2}{\varepsilon - \kappa} . \]
Formal security guarantees

Theorem. If Malice manages to convince Charlie with a probability ε over all possible runs of the Schnorr identification scheme, then there exist an extraction algorithm \mathcal{K} that runs in expected time

$$\mathbb{E}[t_{\mathcal{K}}] = \Theta \left(\frac{2 \cdot t_{\text{Malice}}}{\varepsilon - \kappa} \right)$$

where $\kappa = \frac{1}{q}$

and extracts the corresponding secret key.

Subjective security guarantee. If I believe that finding a particular discrete logarithm $\log(pk)$ is hard then Malice cannot succeed against pk.

Objective security guarantee. If computing discrete logarithm is hard in the group $\langle g \rangle$ then the Malice success probability over all possible public keys must be small or otherwise Theorem leads to a contradiction.
Fiat-Shamir heuristics

\[\begin{align*}
\alpha & \leftarrow \mathcal{R} \\
\beta & \leftarrow \mathcal{C}
\end{align*} \]

If \(\mathcal{V}_{pk}(\alpha, \beta, \gamma) = 1 \) then
- Alice passes the test.

Bob can efficiently create the protocol transcript by himself.

Since \(\beta = h(m, \alpha) \) then
- Charlie cannot cheat,
- the protocol is non-interactive,
- the protocol is transferable.

\[\begin{align*}
\alpha & \leftarrow \mathcal{R} \\
\beta = h(m, \alpha) & \leftarrow \\
m & \leftarrow \\
\alpha, \beta, \gamma & \leftarrow \\
\mathcal{V}_{pk}(\alpha, \beta, \gamma) \land h(m, \alpha) \trianglerighteq \beta
\end{align*} \]
What are the main differences between these scenarios?

How to achieve equivalence between these different scenarios?
An obvious choice of the function family

Let \mathcal{H}_{all} of all functions $\{h : \mathcal{M} \times \mathcal{R} \rightarrow \mathbb{Z}_q\}$.

- If h is chosen uniformly from the function family \mathcal{H}_{all} then β has the same distribution as in the Schnorr identification protocol.
- The value $h(m, \alpha)$ is independent from other values $h(m_i, \alpha_i)$.
- If Malice has only a black-box access to h and must make oracle queries to evaluate $h(m, \alpha)$ then Malice cannot know β before choosing α.

The corresponding model is known as random oracle model.

- We can always assume that Malice computes β as $h(m, \alpha)$.
- If Malice makes a single hashing query then Malice succeeds with the same probability as in the Schnorr identification protocol.
General knowledge extraction task

Assume that Malice never queries the same value \(h(m_i, \alpha_i) \) twice and that Malice herself verifies the validity of the candidate signature \((m_{n+1}, s_{n+1})\).

Let \(\omega_0 \) denote the randomness used by Malice and let \(\omega_1, \ldots \omega_{n+1} \) be the replies for the hash queries \(h(m_i, \alpha_i) \). Now define

\[
A(\omega_0, \omega_1, \ldots, \omega_{n+1}) = \begin{cases}
 i, & \text{if the } i^{\text{th}} \text{ reply } \omega_i \text{ is used in forgery}, \\
 0, & \text{if Malice fails}.
\end{cases}
\]

- For any \(\overline{\omega} = (\omega_0, \ldots, \omega_{i-1}, \overline{\omega}_i, \ldots, \overline{\omega}_{n+1}) \), Malice behaves identically up to the \(i^{\text{th}} \) query as with the randomness \(\omega \).

- To extract the secret key \(sk \), we must find \(\omega \) and \(\overline{\omega} \) such that \(A(\omega) = i \) and \(A(\overline{\omega}) = i \) and \(\omega_i \neq \overline{\omega}_i \).
Extended classical algorithm

Rewind:
1. Probe random entries $A(\omega)$ until $A(r, c) \neq 0$.
2. Store the matrix location ω and the rewinding point $i \leftarrow A(\omega)$.
3. Probe random entries $A(\overline{\omega})$ until $A(\overline{\omega}) = i$.
4. Output the location tuple $(\omega, \overline{\omega})$.

Rewind-Exp:
1. Repeat the procedure Rewind until $\omega_i \neq \overline{\omega}_i$.
2. Use the Knowledge extraction lemma to extract sk.
Average case complexity I

Assume that Malice convinces Charlie with probability ε. Then the results proved for the simplified case imply

$$E[\text{probes}_1] = \frac{1}{\varepsilon} \quad \text{and} \quad E[\text{probes}_2 | A(\omega) = i] = \frac{1}{\varepsilon_i}$$

where ε_i is the fraction of entries labelled with i. Thus

$$E[\text{probes}_2] = \sum_{i=1}^{n+1} \Pr [A(\omega) = i] \cdot E[\text{probes}_2 | A(\omega) = i]$$

$$E[\text{probes}_2] = \sum_{i=1}^{n+1} \varepsilon_i \frac{1}{\varepsilon_i} \cdot \frac{1}{\varepsilon} = \frac{n + 1}{\varepsilon}.$$
Average case complexity II

As a result we obtain that the Rewind algorithm does on average

\[\mathbb{E}[\text{probes}] = \frac{n+2}{\varepsilon} \]

probes. Since the Rewind algorithm fails with probability

\[\Pr[\text{failure}] = \frac{\Pr[\text{halting} \land \omega_i = \overline{\omega}_i]}{\Pr[\text{halting}]} \leq \frac{\kappa}{\varepsilon} \]

where \(\kappa = \frac{1}{q} \).

we make on average

\[\mathbb{E}[\text{probes}^*] = \frac{1}{\Pr[\text{success}]} \cdot \mathbb{E}[\text{probes}] \leq \frac{\varepsilon}{\varepsilon - \kappa} \cdot \frac{n + 2}{\varepsilon} = \frac{n + 2}{\varepsilon - \kappa} \]
Formal security guarantees

Theorem. If Malice manages to output valid signature by making at most n queries to the random oracle, then there exist an extraction algorithm \mathcal{K} that runs in expected time

$$
E[t_{\mathcal{K}}] = \Theta \left(\frac{(n + 2) \cdot t_{\text{Malice}}}{\varepsilon - \kappa} \right)
$$

where $\kappa = \frac{1}{q}$

and extracts the corresponding secret key.

Subjective security guarantee. If I *believe* that finding a particular discrete logarithm $\log(pk)$ is hard then Malice cannot succeed against pk.

Objective security guarantee. If computing discrete logarithm is hard in the group $\langle g \rangle$ then the Malice success probability over all possible public keys must be small or otherwise Theorem leads to a contradiction.
What do these security guarantees mean in practise?
The limit on the average advantage over all functions means:

- An attack algorithm A can be successful on few functions
- For randomly chosen function family \mathcal{H} the corresponding average advantage is comparable with high probability over the choice of \mathcal{H}.

Such argumentation does not rule out possibility that Malice can choose adaptively a specialised attack algorithm A based on the description of h.
Security against generic attacks

An adaptive choice of a specialised attack algorithm implies that the attack depends on the description of the hash function and not the family \mathcal{H}.

Often, it is advantageous to consider only generic attacks that depend on the description of function family \mathcal{H} and use only black-box access to the function h. Therefore, we can consider two oracles $\mathcal{O}_{\mathcal{H}_{\text{all}}}$ and $\mathcal{O}_{\mathcal{H}}$.

If \mathcal{H} is pseudorandom function family then for any generic attack, we can substitute \mathcal{H} with the \mathcal{H}_{all} and the success decreases marginally.

Theorem. Security in the random oracle model implies security against generic attacks if \mathcal{H} is a pseudorandom function family.

▷ The assumption that Malice uses only generic attacks is subjective.
▷ Such an assumption are not universal, i.e., there are settings where this assumption is clearly irrational (various non-instantiability results).
Literature

