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Authentication Codes
This lecture is based on: Thomas Johansson. Authentication codes, see: 

http://www.selmer.uib.no/researchcourse2004/program/
An unconditionally secure solution to the authentication problem first appeared

in 1974:  
E.N. Gilbert, F.J. MacWilliams and N.J.A. Sloane, “Codes which detect

deception”, Bell System Technical Journal, vol. 53, no. 3, 1974, pp. 405–
424.

Gustavus Simmons was independently working on the same problems. In the 
beginning of the 80’s Simmons published several papers on the topic, and  
established the authentication model, see

G.J. Simmons, “A survey of Information Authentication”, in Contemporary
Cryptology, The science of information integrety, G.J. Simmons, Ed., IEEE 
Press, New York, 1992. pp. 379–420.

Simmons work on authentication theory has a similar role as Shannon’s work
on secrecy, see:

C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell Syst. Tech. 
J., vol. 28, Oct. 1949, pp. 269–279.

http://www.selmer.uib.no/researchcourse2004/program/


Authentication Model

• Three participants, the transmitter, the receiver, and the 
opponent. 

• The transmission from the transmitter to the receiver
takes place over an insecure channel. 

• Opponent (enemy) has access to the channel in the 
sense that he can insert a message into the channel, or
alternatively, observe a transmitted message and then
replace it with another message. 



Authentication code
s source message, s ∈ S , S is the set of possible source messages; 
m (channel) message, m ∈ M, M is the set of possible channel

messages; 
e secret encoding rule (aka key), e ∈ E, E is the set of possible encoding

rules. The key is secretly shared between the transmitter and the 
receiver.

Authentication code (A-code) is a mapping f : S ×E →M, (s, e) → m.

Injectivity property of f: if f(s, e) = m and f(s’, e) = m, then s = s’. 
(Otherwise the receiver would not be able to determine which
source message was transmitted.)

When the receiver receives a message m, he must check whether a 
source message s exists, such that f(s, e) = m. If such an s exists, the 
message m is accepted as authentic (m is called valid). Otherwise, m
is not authentic and  thus rejected. We can assume that the receiver
checks f(s, e) for all s ∈ S, and if he finds s ∈ S such that f(s, e) = m he 
outputs s and otherwise he outputs a reject signal.



Deception
Two possible attacks: 
(1) impersonation attack: the opponent inserts a message m and hoping for 

it to be accepted as authentic
(2)substitution attack: the opponent observes the message m and replaces

this with another message m’, m ≠ m’, hoping for m’ to be valid. 
The opponent chooses the message to maximize success probability.  

Impersonation probability: PI = max m Pr[m is valid]

Substitution probability: PS = max m,m’, m ≠ m’ Pr[m’ is valid | m is valid].

(Note that these definitions consider only transmission of a single message. For transmission
of multiple messages, we must introduce a more general definition of the deception probabilities.)

Deception probability:  PD = max(PI , PS ).

Denote: E(m) the set of keys for which a message m is valid, 
E(m) = {e ∈ E; there is s ∈ S, f(s, e) = m}.



Basic properties
The number of authentic messages in M is at least |S| . Hence

PI ≥ |S| / |M|

Similarly for the substitution attack, after the observation of one legal
message, at least |S| − 1 of the remaining |M| − 1 messages must be
authentic. Thus

PS ≥ (|S| − 1) / (|M| − 1) .

It follows: 
(1) In order to have good protection |M| must be chosen much larger

than |S|. This affects the message expansion of our authentication
code. For a fixed source message space, an increase in the 
authentication protection implies an increased message expansion. 

(2) Complete protection, i.e., PD = 0, is not possible. We must be
satisfied with a protection where PD is small.



Example 1
S = {H, T},  M = {1, 2, 3, 4} and  E = {0, 1, 2, 3}

It is easy to verify that PI =  1/2 if the keys are
uniformly distributed.

1 2 3 4

0 H T - -

1 T - H -

2 - H - T

3 - - T H

m
e



Simmons’ Bounds
(Simmons’ bounds) Let H(X) denote the entropy of the random variable X, and  

I(X; Y) denote the mutual information between X and Y, I(X,Y) = H(X) –
H(X|Y). For any authentication code,  

PI ≥ 2−I(M;E) , and PS ≥ 2−H(E|M) , if |S| ≥ 2.
For the impersonation attack, we see that PI is upper bounded by the mutual information
between the message and the key. This means that in order to have a good protection, 
i.e., PI small, we must give away a lot of information about the key. In the substitution
attack, PS is lower bounded by the uncertainty about the key when a message has been
observed. Thus we cannot waste all the key entropy for protection against the 
impersonation attack, but some uncertainty about the key must remain for protection
against the substitution attack. 

It follows that

PI PS ≥ 2−I(M;E)−H(E|M)  = 2−H(E) . 
From the inequality H(E) ≤ log2 |E| we then obtain:
(Square root bound). For any authentication code,  EPD ≥



Example 1 continued
• Keys are uniformly distributed, thus H(E) = 2. Then also M is 

uniformly distributed, and H(M) = 2, independently of the distribution
of S. Similarly, as in Stinson, Thm 2.10 we get: H(E|M) + H(M) = 
H(E,M) = H(E,S) = H(E) +H(S), from where it follows that H(E|M) = 
H(E) + H(S) – H(M) = H(S). Thus H(E|M) ≤ 1 with equality if the 
source messages H and T are equiprobable. Hence I(M;E) = H(E)-
H(E|M) ≥ 1. It follows that PI = ½ ≥ 2−I(M;E) with equality if the source
messages are equiprobable.

• For the substitution probability we get PS ≥ 2−H(E|M) = 2−H(S) if. In the 
case where the source messages are equally likely, we can easily
verify that PS = ½ . On the other hand, then H(S) =1, and thus the 
equality PS = 2−H(S) holds.   



Constructions based on Reed-
Solomon codes

Let Fq be a field with q elements. We set 
S = {s=(s1,…,sk), si ∈ Fq}
s(x) = s1x + s2x2 +s3x3 + …+ skxk

E ={(e1,e2)}
We define f: f(s,e) = (s, e1 + s(e2)) , where s(e2) is the polynomial s(x) 

evaluated at the point x = e2.
Then the parameters of the A-code are:

|S| = qk, |E| = q2, |M| = qk +1.
The attack probabilities are PI = 1/q and PS = k/q. The latter follows from

the covering radius properties of the Reed-Solomon codes.
We see that the longer the source message, the easier the substitution

attack becomes.



AU-hash families
Definition: Let H = {hK | K, hK :D→ T } be a family of hash functions

mapping elements of set D to set T. Then H is ε-Almost-Universal (ε-
AU) if, for all x, x' ∈ D, x ≠ x', we have Pr[hK(x) = hK(x')] ≤ ε .

Known constructions of ε -AU hash families have the property that the 
value of ε depends on the length of message inputs, e.g., the 
construction given on the previous slide. Typically, the tag space T is 
relatively small and it is desired that ε ≈ 1/|T |. The effect of message
length can be eliminated using constructions based on 
concatenation of hash families. Towards this end the following
theorem is useful.

Theorem: If there exists an ε1 -AU hash family H1 of hash functions from
D to T1 and an ε2 -AU hash family H2 of hash functions from T1 to T2, 
then there exist an ε -AU hash family H of hash functions from D to 
T2, where ε = ε1 + ε2 + ε1 ε2 ≤ ε1 + ε2

The hash functions in H are constructed as composed functions of 
hash function in H1 and H2.



Polynomial MAC (Example)
Suppose that the message to be authenticated (after appropriate 

formatting) consists of L 64-bit blocks ML-1, …, M1, M0. Given a 64-bit 
quantity k, a 64-bit authenticator (tag) t is computed using a L⋅2-64-AU
hash family as  
t =  ML-1k L-1 + … + M1 k + M0 over GF(264).

Given a second 64-bit quantity λ the 32-bit message authentication tag   
is computed by computing first the product λ ⋅t over GF(264), and 
truncating the result to the least significant 32 bits. This is an 
instantiation of an 2-32-AU hash family (secure truncation), see 
Lemma 10 of [BJKS93]. The authentication tag is obtained by xor-
ing this result with a 32-bit one time pad. For this construction the 
forgery probability is bounded by L⋅2-64+2-32 ≈ 2-32 for messages with 
length up to 238 bits. 

[BJKS93]J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets. On 
families of hash functions via geometric codes and concatenation. 
Proceedings of CRYPTO '93, LNCS 773, 331-342, Springer-Verlag, 1993.
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