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T-79.5502 Advanced Course 
in Cryptology

Lecture 3, Nov 8, 2007
Insecurity of textbook crypto (Chapter 8)

– Weak security notion
– The CDH and DL Problems and Assumptions
– Cryptanalytic attacks against Public Key Cryptosystems
– RSA Problem and Assumption
– IF Problem and Assumption
– Active attack on textbook RSA
– Insecurity of Rabin encryption
– All-or-nothing secrecy of ElGamal encryption
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Weak Security Notion (Property 8.2)

(i) All-or-nothing secrecy: For a given ciphertext output 
from a given encryption algorithm, the attacker’s task 
is to retrieve the whole plaintext block; or for a given 
plaintext-ciphertext pair the attacker’s task is to 
uncover the secret key. The attacker either succeeds 
to get all of the secret or fails with nothing.

(ii) The attacker does not manipulate or modify 
ciphertexts , and does not ask a key owner to provide 
encryption or decryption services. 
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Diffie-Hellman Key Exchange

ALICE BOB

a∈U[1, p-1]

A = ga mod p
b ∈U [1, p-1]

B = gb mod p
A

B

K = Ba mod p K = Ab mod p
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Security of Diffie-Hellman Key Exchange

• If the Discrete Logarithm Problem (DL) is easy then DH KE is 
insecure

• Computational Diffie-Hellman Problem (CDH): 
Given g,ga,gb, compute gab.

• It seems that in groups where the CDH is easy, also the DL is easy. 
It is unknown if this holds in general (Maurer-Wolf).

• DH KE is secure against passive wiretapping.
• DH KE is insecure under the active man-in-the-middle attack: Man-

in-the-Middle exchanges a secret key with Alice, and another with
Bob, while Alice believes that she is talking confidentially to Bob, 
and Bob believes he is talking confidentially to Alice (see next slide).

• This problem is solved by authenticating the Diffie-Hellman key
exchange messages.  
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Man-in-the-Middle in the DH KE

Alice Malice
(man-in-the-middle) Bob

a

ga

K2= (ga)c2

ga
gc1

b

gb

K1= (gb)c1

gc2

gb

c1

gc1

c2

gc2

K1= (gb)c1

K2= (ga)c2

Protection using K2 Protection using K1
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CDH and DL Problems (in a finite group)
Definition 8.1 CDH Problem
INPUT desc(G): the description of finite group G

g ∈ G: a generator element of g
ga, gb ∈ G for some integers 0 < a,b < ord (G)

OUTPUT gab

Definition 8.2: DL Problem
INPUT desc(G): the description of finite group G

g ∈ G: a generator element of g
h ∈U G

OUTPUT the unique integer a < ord(G) such that h = ga

(denote a = logg h)
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CDH Assumption (in a finite group)
Assumption 8.1 CDH Assumption
A CDH problem solver is a PP algorithm A with an advantage ε > 0 

defined by  ε = Prob[ gab ← A(desc(G), g, ga, gb )] , where the input to A is 
given in Def 8.1. and the probability is taken over random choices of G, 
g, a and b.

Let IG be an instance generator that on input 1k runs in time polynomial in 
k and outputs 
(i) desc(G) with ord (G) = q, where |q| = k, 
(ii) a generator element g ∈ G,
(iii) ga and gb , where a and b in (0, q].

We say that IG satisfies the Computational Diffie-Hellman (CDH) 
assumption, if there is no CDH problem solver for IG(1k) with 
advantage ε(k) > 0  that is non-negligible in k, for all sufficiently large k.

The difficulty of the CDH problem means that Diffie-Hellman KE is secure 
(the key remains secret) under passive attacks.
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Recall: Non-Polynomial Bounds
Definition 4.12. A function f (n): N→ R is said to be 

unbounded by any polynomial in n (or, non-polynomially
bounded quantity) if for any polynomial p(n) there exists 
a natural number n0 such that f(n) > p(n), for all n > n0.

Definition 4.13. A function ε(n): N→ R is said to be a 
negligible in n if its inverse 1/ε(n) is a non-polynomially
bounded quantity. 

Hence a function ε(n):N→ R is said to be a non-negligible 
in n if its inverse 1/ε(n) is a polynomially bounded 
quantity.
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DL Assumption (in a finite group)
Assumption 8.1 DL Assumption
A DL problem solver is a PP algorithm A with  advantage ε > 0 defined 

by  ε = Prob[ loggh← A(desc(G), g, h )] where the input to A is 
defined in Def 8.2. and the probability is taken over random choices 
of G, g and h.

Let IG be an instance generator that on input 1k runs in time 
polynomial in k and outputs 
(i) desc(G) with ord (G) = q, where |q| = k, 
(ii) a generator element g ∈ G,
(iii) h ∈ G. 

We say that IG satisfies the Discrete Logarithm (DL) assumption if 
there is no DL problem solver for IG(1k) with advantage ε(k) > 0  
that is non-negligible in k for all sufficiently large k.

If DL Assumption holds then the function  x → gx is one way. It is not 
known if it is a trap-door one-way function.
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Trapdoor One-way Function
Property 8.1:
A one-way trapdoor function is a one-way function ft: D →

R, i.e., it is easy to evaluate for all x ∈ D and difficult to 
invert, for almost all values in R. However, if the trapdoor 
information is used, then for all values y ∈ R it is easy to 
compute  x ∈ D satisfying y = ft(x) .

easy = there is an practically efficient algorithm and an non-
negligible advantage to get the result right

difficult = not easy
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Importance of Arbitrary Instances
for Intractability Assumptions

For example: If the order q of the group G is a smooth number, i.e., 
q = q1

e1q2
e2…qm

em

then we can find the discrete logarithm efficiently using the Pohlig-
Hellman algorithm. Actually, we solve the discrete logarithm problem 
separately in each small group of order qi

ei generated by gri where 
ri = q/qi

ei

(Recall the structure of a finite cyclic group. Example: If g is a generator 
of Z*19 , g is of order 18= 2· 32, then g1 = g2 is a generator of a cyclic 
subgroup of order 9 and g2 = g9 is a generator of cyclic subgroup of 
order 2 in Z*19. For each h ∈ Z*19 the discrete logarithm a = logg h can 
be found by computing a1 = logg1 h2 = 2a mod 9 and a2 = logg2 h9 = 9a 
mod 2 and combining the results using the Chinese Remainder 
Theorem).
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Cryptanalysis against PK 
cryptosystems: Active Attacks

Chosen-plaintex attack (CPA): An attacker has the 
encryption black box in its possession. 

Chosen-ciphertext attack (CCA): An attacker can give a 
finite number of ciphertexts (excl. the target ciphertext) 
and see the corresponding decryptions.  

Adaptive chosen-ciphertext attack (CCA2): An attacker has 
the decryption black box in its possession, and can input 
chosen ciphertexts (excl. the target one) and obtain the  
decryptions, one at a time.
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The RSA Problem and Assumption
Definition 8.4 RSA Problem
INPUT N = pq with p, q prime numbers

e: an integer such that gcd(e, φ(N)) = 1
c ∈ ZN

*

OUTPUT the unique integer m ∈ ZN
* such that me ≡ c (mod N)

Assumption 8.3 RSA Intractability Assumption
An RSA problem solver is a PP algorithm A with an advantage ε > 0 

defined by  ε = Prob[ m← A(N, e, me)] where the input to A is defined in 
Def 8.4.

Let IG be an instance generator that on input 1k runs in time polynomial in 
k and outputs 
(i) a 2k-bit modulus N = pq where p and q are  two distinct uniformly 
random primes each is k bits long
(ii) e ∈ Z*

(p-1)(q-1)
We say that IG satisfies the RSA assumption if there is no RSA problem 

solver for IG(1k) with advantage ε(k) >0 non-negligible in k, for all 
sufficiently large k.
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The Integer Factorization Problem and 
Intractability Assumption

Definition 8.5 IF Problem
INPUT N odd composite integer with at least two distinct 

prime factors
OUTPUT prime  p such that p | N

Assumption 8.4 IF Assumption
An IF problem solver is a PP algorithm A with an advantage ε > 0 

defined by  ε = Prob[ A(N) divides N  and 1 < A(N) < N] where the 
input to A is defined in Def 8.5.

Let IG be an instance generator that on input 1k runs in time 
polynomial in k and outputs a 2k-bit modulus N = pq where p and q 
are  two distinct uniformly random primes each is k bits long.

We say that IG satisfies the IF assumption if there is no IF problem 
solver for IG(1k) with advantage ε > 0  non-negligible in k for all 
sufficiently large k.
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An Attack on the Text-book RSA

Recall: Multiplicative property of the RSA
Attack: Malice sees c and knows that m < 2t. With 

non-negligible probability there exist m1 and m2
such that m = m1· m2, where m1 < 2 t/2.

Hence c = m1
e · m2

e (mod N).
Malice builds a list {1e,2e,3e,…,(2t/2)e}
And searches through the sorted list trying to find 

i and j ∈{1,2,3,…, 2t/2} such that  
c ·(ie)-1 ≡ je (mod N)
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Cost
Space cost: 2t/2 · log N bits

Time cost: 
• creating lists OB(2t/2 · log3N)
• sorting the list OB(t/2 · 2t/2 )
• searching through the sorted list OB(2t/2 ·(t/2 +log3N))
Total time cost: OB(2t/2 + 1 ·(t/2 +log3N) )

If the space cost is affordable then the attack achieves
square root level reduction in time complexity.

Real life instantiation: m = DES-key, t = 56, space 238 bits, 
time 229 modular exponentiations.
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Insecurity of Rabin
All-or-nothing security of Rabin encryption is equivalent to 

the intractability of the IF problem. For a proof see
Stinson’s book (T-79.5501). 

However, Rabin encryption is not secure under CCA 
attack:
given a decryption oracle, there is an efficient algorithm
to compute square roots. Given an algorithm to compute
square roots there a probabilistic algorithm to factorise
the modulus.

See also Lecture 1, Slide 13 (Rabin OT)
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Security of ElGamal encryption
Theorem 8.3 For a plaintext message uniformly distributed in the 

plaintext message space, the ElGamal cryptosystem is “all-or-nothing”
secure against CPA if and only if the CDH is hard. 

Proof: “<=” Assume ElGamal is not “all-or-nothing” secure. Then there is 
a decryption oracle, which given public key (p, g, y) and ciphertext
(c1,c2), the oracle outputs

m ← (p,g,y, c1,c2)
with a non-negligible advantage δ , such that

c2 /m ≡ gt (mod p), where t = (logg y)( logg c1).
Then for an arbitrary CDH problem instance (p,g, g1,g2) we set (p,g, g1) as 

the public key and set (g2, c2) as ciphertext pair for a random c2 . 
Then with advantage δ , the ElGamal decryption oracle outputs

m ← (p, g, g1, g2, c2)
with m satisfying 

c2 /m ≡ gab(mod p), where a = logg g1 and b = logg g2

thus solving the CDH problem efficiently.
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Insecurity of ElGamal encryption

Consider the case G = Zp*, where p is prime. Then q
divides p -1. From the ciphertext, Malice gets

c2
q = m q

where q is the order of the generator g. This gives
information about m if m is not in the subgroup, and 
makes ElGamal encryption deterministic!

ElGamal encryption is multiplicative. Hence the same
attack as with the RSA applies. The time complexity of 
the attack is about 2q/2 .
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Summary – Intractability Assumption
1. Security parameter 1k  , k ∈N, e.g., k = 160
2. Problem with instance space I and solution space S
3. Instance generator IG: N→ I
4. Problem solver SG: I → S with advantage ε: N → (0,1],

ε(k) = Pr[S = SG(I) is a solution to the problem, for I =IG(k)],
where the probability is taken over the randomness of 
IG and SG.

5. We say that IG satisfies intractability assumption for this 
problem, if there is no solver SG with non-negligible 
advantage. This means that there is no solver with 
advantage ε = ε(k) and no polynomial p(k) such that there 
exists k0 such that  1/ε(k) < p(k), for k > k0.
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