T-79.5502 Advanced Course in Cryptology

Lecture 3, Nov 8, 2007

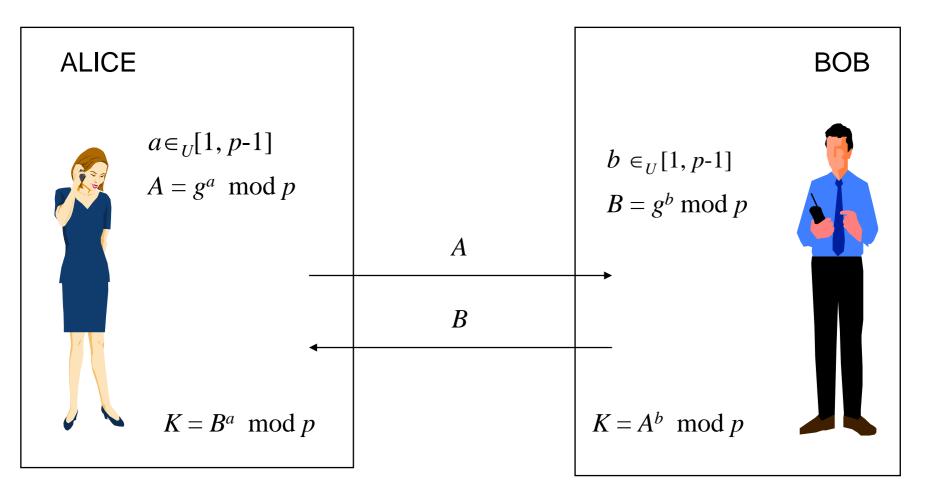
Insecurity of textbook crypto (Chapter 8)

- Weak security notion
- The CDH and DL Problems and Assumptions
- Cryptanalytic attacks against Public Key Cryptosystems
- RSA Problem and Assumption
- IF Problem and Assumption
- Active attack on textbook RSA
- Insecurity of Rabin encryption
- All-or-nothing secrecy of ElGamal encryption

Weak Security Notion (Property 8.2)

- (i) All-or-nothing secrecy: For a given ciphertext output from a given encryption algorithm, the attacker's task is to retrieve the whole plaintext block; or for a given plaintext-ciphertext pair the attacker's task is to uncover the secret key. The attacker either succeeds to get all of the secret or fails with nothing.
- (ii) The attacker does not manipulate or modify ciphertexts, and does not ask a key owner to provide encryption or decryption services.

Diffie-Hellman Key Exchange



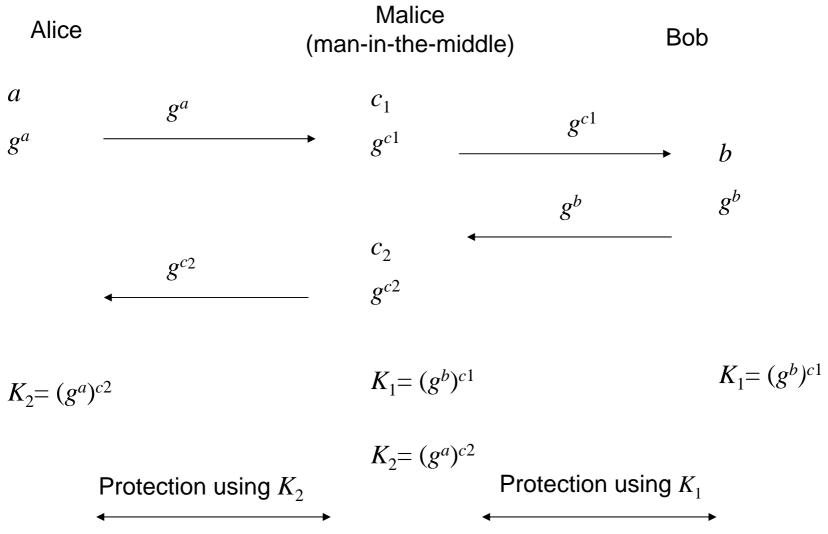
Security of Diffie-Hellman Key Exchange

- If the Discrete Logarithm Problem (DL) is easy then DH KE is insecure
- Computational Diffie-Hellman Problem (CDH):

Given g, g^a, g^b , compute g^{ab} .

- It seems that in groups where the CDH is easy, also the DL is easy.
 It is unknown if this holds in general (Maurer-Wolf).
- DH KE is secure against passive wiretapping.
- DH KE is insecure under the active man-in-the-middle attack: Manin-the-Middle exchanges a secret key with Alice, and another with Bob, while Alice believes that she is talking confidentially to Bob, and Bob believes he is talking confidentially to Alice (see next slide).
- This problem is solved by authenticating the Diffie-Hellman key exchange messages.

Man-in-the-Middle in the DH KE



CDH and DL Problems (in a finite group)

Definition 8.1 CDH Problem

INPUTdesc(G): the description of finite group G $g \in G$: a generator element of g $g^a, g^b \in G$ for some integers 0 < a, b < ord (G)OUTPUT g^{ab}

Definition 8.2: DL Problem

INPUTdesc(G): the description of finite group G $g \in G$: a generator element of g $h \in_{U} G$ OUTPUTthe unique integer $a < \operatorname{ord}(G)$ such that $h = g^a$ (denote $a = \log_g h$)

CDH Assumption (in a finite group)

Assumption 8.1 CDH Assumption

- A CDH problem solver is a \mathcal{PP} algorithm A with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[g^{ab} \leftarrow A(\operatorname{desc}(G), g, g^a, g^b)]$, where the input to A is given in Def 8.1. and the probability is taken over random choices of G, g, a and b.
- Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs
 - (i) desc(G) with ord (G) = q, where |q| = k,

```
(ii) a generator element g \in G,
```

```
(iii) g^a and g^b, where a and b in (0, q].
```

We say that *IG* satisfies the Computational Diffie-Hellman (CDH) assumption, if there is no CDH problem solver for $IG(1^k)$ with advantage $\varepsilon(k) > 0$ that is non-negligible in *k*, for all sufficiently large *k*.

The difficulty of the CDH problem means that Diffie-Hellman KE is secure (the key remains secret) under passive attacks.

Recall: Non-Polynomial Bounds

Definition 4.12. A function $f(n): \mathbb{N} \to \mathbb{R}$ is said to be unbounded by any polynomial in n (or, non-polynomially bounded quantity) if for any polynomial p(n) there exists a natural number n_0 such that f(n) > p(n), for all $n > n_0$.

Definition 4.13. A function $\varepsilon(n): \mathbb{N} \to \mathbb{R}$ is said to be a negligible in *n* if its inverse $1/\varepsilon(n)$ is a non-polynomially bounded quantity.

Hence a function $\varepsilon(n): \mathbb{N} \to \mathbb{R}$ is said to be a non-negligible in *n* if its inverse $1/\varepsilon(n)$ is a polynomially bounded quantity.

DL Assumption (in a finite group)

Assumption 8.1 DL Assumption

- A DL problem solver is a \mathcal{PP} algorithm A with advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[\log_g h \leftarrow A(\operatorname{desc}(G), g, h)]$ where the input to A is defined in Def 8.2. and the probability is taken over random choices of G, g and h.
- Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs

(i) desc(G) with ord (G) = q, where |q| = k,

```
(ii) a generator element g \in G,
```

(iii) $h \in G$.

- We say that *IG* satisfies the Discrete Logarithm (DL) assumption if there is no DL problem solver for $IG(1^k)$ with advantage $\varepsilon(k) > 0$ that is non-negligible in *k* for all sufficiently large *k*.
- If DL Assumption holds then the function $x \rightarrow g^x$ is one way. It is not known if it is a trap-door one-way function.

Trapdoor One-way Function

Property 8.1:

A one-way trapdoor function is a one-way function $f_t: D \rightarrow R$, i.e., it is *easy* to evaluate for all $x \in D$ and *difficult* to invert, for almost all values in *R*. However, if the trapdoor information is used, then for all values $y \in R$ it is *easy* to compute $x \in D$ satisfying $y = f_t(x)$.

easy = there is an practically efficient algorithm and an nonnegligible advantage to get the result right difficult = not easy

Importance of Arbitrary Instances for Intractability Assumptions

For example: If the order q of the group G is a smooth number, i.e.,

 $q = q_1^{e_1} q_2^{e_2} \dots q_m^{e_m}$

then we can find the discrete logarithm efficiently using the Pohlig-Hellman algorithm. Actually, we solve the discrete logarithm problem separately in each small group of order q_i^{ei} generated by g^{ri} where

 $ri = q/q_i^{ei}$

(Recall the structure of a finite cyclic group. Example: If g is a generator of \mathbb{Z}_{19}^* , g is of order $18 = 2 \cdot 3^2$, then $g_1 = g^2$ is a generator of a cyclic subgroup of order 9 and $g_2 = g^9$ is a generator of cyclic subgroup of order 2 in \mathbb{Z}_{19}^* . For each $h \in \mathbb{Z}_{19}^*$ the discrete logarithm $a = \log_g h$ can be found by computing $a_1 = \log_{g1} h^2 = 2a \mod 9$ and $a2 = \log_{g2} h^9 = 9a \mod 2$ and combining the results using the Chinese Remainder Theorem).

Cryptanalysis against PK cryptosystems: Active Attacks

Chosen-plaintex attack (CPA): An attacker has the encryption black box in its possession.

Chosen-ciphertext attack (CCA): An attacker can give a finite number of ciphertexts (excl. the target ciphertext) and see the corresponding decryptions.

Adaptive chosen-ciphertext attack (CCA2): An attacker has the decryption black box in its possession, and can input chosen ciphertexts (excl. the target one) and obtain the decryptions, one at a time.

The RSA Problem and Assumption

Definition 8.4 RSA Problem

INPUT N = pq with p, q prime numbers

e: an integer such that $gcd(e, \phi(N)) = 1$

 $c \in \mathbf{Z}_N^{*}$

OUTPUT the unique integer $m \in \mathbf{Z}_N^*$ such that $m^e \equiv c \pmod{N}$

Assumption 8.3 RSA Intractability Assumption

An RSA problem solver is a \mathcal{PP} algorithm A with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[m \leftarrow A(N, e, m^e)]$ where the input to A is defined in Def 8.4.

Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs

(i) a 2k-bit modulus N = pq where p and q are two distinct uniformly random primes each is k bits long

(ii) $e \in \mathbf{Z}^{*}_{(p-1)(q-1)}$

We say that IG satisfies the RSA assumption if there is no RSA problem solver for $IG(1^k)$ with advantage $\varepsilon(k) > 0$ non-negligible in k, for all sufficiently large k.

The Integer Factorization Problem and Intractability Assumption

Definition 8.5 IF Problem

INPUT *N* odd composite integer with at least two distinct factors

OUTPUT prime p such that p / N

Assumption 8.4 IF Assumption

An IF problem solver is a \mathcal{PP} algorithm A with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[A(N) \text{ divides } N \text{ and } 1 < A(N) < N]$ where the input to A is defined in Def 8.5.

Let *IG* be an instance generator that on input 1^k runs in time polynomial in *k* and outputs a 2*k*-bit modulus N = pq where p and q are two distinct uniformly random primes each is *k* bits long.
We say that *IG* satisfies the IF assumption if there is no IF problem solver for *IG*(1^k) with advantage ε > 0 non-negligible in *k* for all sufficiently large *k*.

An Attack on the Text-book RSA

Recall: Multiplicative property of the RSA

Attack: Malice sees *c* and knows that $m < 2^t$. With non-negligible probability there exist m_1 and m_2 such that $m = m_1 \cdot m_2$, where $m_1 < 2^{t/2}$.

Hence $c = m_1^e \cdot m_2^e \pmod{N}$.

Malice builds a list $\{1^{e}, 2^{e}, 3^{e}, ..., (2^{t/2})^{e}\}$

And searches through the sorted list trying to find i and $j \in \{1, 2, 3, ..., 2^{t/2}\}$ such that

 $c \cdot (i^e)^{-1} \equiv j^e \pmod{N}$

Cost

Space cost: $2^{t/2} \cdot \log N$ bits

Time cost:

- creating lists $O_{\mathsf{B}}(2^{t/2} \cdot \log^3 N)$
- sorting the list $O_{\rm B}(t/2 \cdot 2^{t/2})$
- searching through the sorted list $O_B(2^{t/2} \cdot (t/2 + \log^3 N))$ Total time cost: $O_B(2^{t/2+1} \cdot (t/2 + \log^3 N))$
- If the space cost is affordable then the attack achieves square root level reduction in time complexity.
- Real life instantiation: m = DES-key, t = 56, space 2^{38} bits, time 2^{29} modular exponentiations.

Insecurity of Rabin

All-or-nothing security of Rabin encryption is equivalent to the intractability of the IF problem. For a proof see Stinson's book (T-79.5501).

However, Rabin encryption is not secure under CCA attack:

given a decryption oracle, there is an efficient algorithm to compute square roots. Given an algorithm to compute square roots there a probabilistic algorithm to factorise the modulus.

See also Lecture 1, Slide 13 (Rabin OT)

Security of ElGamal encryption

- Theorem 8.3 For a plaintext message uniformly distributed in the plaintext message space, the ElGamal cryptosystem is "all-or-nothing" secure against CPA if and only if the CDH is hard.
- Proof: "<=" Assume ElGamal is not "all-or-nothing" secure. Then there is a decryption oracle, which given public key (p, g, y) and ciphertext (c_1, c_2) , the oracle outputs

 $m \leftarrow (p,g,y,c_1,c_2)$

with a non-negligible advantage $\boldsymbol{\delta}$, such that

 $c_2 / m \equiv g^t \pmod{p}$, where $t = (\log_g y)(\log_g c_1)$.

Then for an arbitrary CDH problem instance (p,g, g_1,g_2) we set (p,g, g_1) as the public key and set (g_2, c_2) as ciphertext pair for a random c_2 . Then with advantage δ , the ElGamal decryption oracle outputs

 $m \leftarrow (p, g, g_1, g_2, c_2)$

with m satisfying

 $c_2 / m \equiv g^{ab} \pmod{p}$, where $a = \log_g g_1$ and $b = \log_g g_2$ thus solving the CDH problem efficiently.

Insecurity of ElGamal encryption

Consider the case $G = \mathbb{Z}_p^*$, where *p* is prime. Then *q* divides *p*-1. From the ciphertext, Malice gets

 $c_2^q = m^q$

where q is the order of the generator g. This gives information about m if m is not in the subgroup, and makes ElGamal encryption deterministic!

ElGamal encryption is multiplicative. Hence the same attack as with the RSA applies. The time complexity of the attack is about $2^{q/2}$.

Summary – Intractability Assumption

- 1. Security parameter 1^k , $k \in \mathbb{N}$, e.g., k = 160
- 2. Problem with instance space I and solution space S
- 3. Instance generator $IG: \mathbb{N} \rightarrow I$
- 4. Problem solver SG: $I \to S$ with advantage $\varepsilon: \mathbb{N} \to (0,1]$, $\varepsilon(k) = \Pr[S = SG(I) \text{ is a solution to the problem, for } I = IG(k)],$ where the probability is taken over the randomness of IG and SG.
- 5. We say that *IG* satisfies intractability assumption for this problem, if there is no solver *SG* with non-negligible advantage. This means that there is no solver with advantage $\varepsilon = \varepsilon(k)$ and no polynomial p(k) such that there exists k_0 such that $1/\varepsilon(k) < p(k)$, for $k > k_0$.