
T-79.5502 Advanced Course
in Cryptology

Lecture 2, November 6, 2007
Computational Complexity
•Turing Machines
•Deterministic Polynomial Time
•Probabilistic Polynomial Time
•Non-deterministic Polynomial Time
•Non-Polynomial Bounds
•Polynomial-time Indistinguishability

Turing Machine

Tape 1

Tape 2

Tape 3

. . .

. . .

blank

blank

Finite-state
control unit

. . .

ce
ll

. . .

tape-head

blank

Turing computation
• A finite number of symbols are placed in the leftmost

cells of the tape. The remaining cells to the right are set
to blank.

• When set to the initial state, the scanning starts from the
leftmost cell.

• The tape heads read contents of the cells.
• When a termination condition is reached, the machine is

said to recognise the input.
• An input which can reach a termination condition is

called an instance in the recognisable language.

Deterministic Polynomial Time – Class P

Definition 4.1: We write P to denote the class of languages
with the following characteristics: a language L is in P if
there exists a Turing machine M and a polynomial p(n)
such that M recognises any instance I ∈ L in time TM(n)
with TM(n) ≤ p(n), for all n ≥ 0, where n is an integer
representing the size of an instance I. Then we say that
L is recognisable in polynomial time.

Languages in P can always be recognised with a
deterministic Turing machine. A deterministic Turing
machine outputs a result which is entirely determined by
the input and the initial state of the machine.

Example: Language DIV3

The finite state control unit of DIV3

Current state Symbol on the
tape

Next move New state

q0 0
1

“blank”

right
right

“yes” and stop

q0

q1

-
q1 0

1
“blank”

right
right

“no” and stop

q2

q0

-
q2 0

1
“blank”

right
right

“no” and stop

q1

q2

-

Intial state q0

Polynomial-Time Computational
Problems

• The problems in P are decisional problems, output is
one bit: recognised or not.

• Turing machines can also write symbols on the tape.
Then they can handle also computational problems.

• E.g., using DIV3 repeatedly a Turing machine can
compute base-3 representation of a given non-negative
integer x, and hence a Turing machine can compute
division by 3 in time C·|x| , where |x| denotes the number
of bits in the binary representation of the integer x.

Von Neumann Architecture
• Building blocks: counter, memory, CPU
• Micro-instructions: Load, Store, Add, Comp, Jump,

JumpZ, Stop
• Any problem solvable using von Neumann computer in

polynomial time, is in P.
• Turing machine has a uniform cost measure
• Von Neumann (circuit based) computers have non-

uniform cost measure.

Order notations
Definition 4.2. We write O(f(n)) to denote a function g(n) such that there

exists a constant c > 0 and a natural number N with |g(n)| ≤ c|f(n)|, for
all n ≥ N.

Bitwise Computation Model: All variables take values 0 or 1, and the
operations used are logical rather than arithmetic: ⊕, ∧, ∨, ¬

Definition 4.3. We write OB(f(n)) to denote O(f(n)) in the bitwise
computation model.

Example. Given two integers a and b asume that the absolute value |a|
of a is larger than the absolute value |b| of b. The Extended
Euclidean Algorithm has time complexity at most O(|a|) (Thm 4.1).
Further, it can be shown using Fibonacci sequence that it has bit
complexity OB((log |a|)3).

Basic Modular Arithmetic
Operations

Operation for a, b ∈[1,n-1] Time Complexity

a±b (mod n)
a·b (mod n)
b-1 (mod n)
a/b (mod n)
ab(mod n)

OB(log n)
OB((log n)2)
OB((log n)2)
OB((log n)2)
OB((log n)3)

Probabilistic Polynomial Time - PP

Non-deterministic Turing machines make random moves. That is, one
of the tapes of a non-deterministic Turing machine is a random tape
which contains uniformly distributed random symbols.

Non-deterministic Turing machine make errors. Non-deterministic
Turing machine with a bounded error is called a probabilistic Turing
machine.

Definition 4.5. We write PP to denote the class of languages with the
following characteristics: a language L is said to be in PP if there
exists a probabilistic Turing machine PM and a polynomial p(n) such
that PM recognises any instance I ∈ L with certain error probability,
which is a random variable of PM’s random move, in time TPM(n) with
TPM(n) ≤ p(n), for all nonnegative integers n, where n is an integer
parameter representing the size of the instance I.

Error Probabilities
Prob[PM recognises I ∈ L | I ∈ L] ≥ ε
Prob[PM recognises I ∈ L | I ∉ L] ≤ δ
where the probability space is the random tape of PM.

The bounds ε and δ are constans such that
½ < ε ≤ 1 and 0 ≤ δ < ½ . That is
Prob[PM recognises I ∉ L | I ∈ L] ≤ 1- ε < ½
ε is the completeness probability bound (1- ε is the upper

bound for probabilities of false rejection)
δ is the soundness probability bound (that is, the

upperbound of probability for false acceptance)

Always fast and always correct - ZPP
ZPP = Zero-sided-error Probabilistic Polynomial time
ε = 1 and δ = 0
Example: Searching Through Phone Book
Input: Book (an alphabetic list of names) with N pages, Person’s

name
Output: The person’s phone number
Algorithm: Open the book at a random page. If the name occurs

on that page, output the phone number. Otherwise, select the
part of the book that contains the name, take it as the book,
and repeat the algorithm from the beginning.

Time complexity O(log N), where N is the number of pages. Hence
this randomized algorithm is faster than the deterministic
algorithm for searching the phone book.

Always Fast and Probably Correct-
PP(MonteCarlo)

ε = 1 and δ > 0

Example: Solovay-Strassen primality test
Input: p a positive integer
Output: Yes if p is prime, otherwise No.
Algorithm: Select random integer a, 1 < a < p - 1, check if

This equality is known as the Euler’s criterion, which holds for primes p and
may hold for composites. Therefore rejection is always correct, that is, the
algorithm is no-biased. Acceptance is false with probability less than ½.

)(mod1 pa
p
a p−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Probably Fast and Always Correct
PP(Las Vegas)

ε < 1 and δ = 0
May terminate without output, but if there is output it is

always correct
Example 1: Primality proof (see next slide)
Example 2: Quantum Factorization

For any N composite, the proportion of a, for which the least
integer r such that a r = 1(mod N) is even, is non-negligible. Then
one can find non-trivial square roots of 1, which is sufficient to
factor N.

ZPP = PP(Monte Carlo)∩PP(Las Vegas)

Primality Proof-
A PP(Las Vegas) Algorithm

Input: p a positive integer and all prime factors q1, q2, q3,…, qk of p-1
Output: Yes if p is prime, otherwise No.
Algorithm: Select random integer a, 1 < a ≤ p – 1.
1. For all i = 1,…,k, check if the following holds:

If it holds for some i, output No-decision and terminate.
2. Check if

If it holds, output No and terminate.
3. Output Yes and teminate.

Yes and No are always correct. No-decision results if a is not a
primitive element modulo p.

)(mod1
1

pa iq
p

=
−

)(mod11 pa p ≠−

Probably Fast and Probably Correct BPP

½ + α ≤ ε < 1 and 0 < δ ≤ ½ - β ,
where α, β ∈ (0, ½)
BPP = Bounded error probability Probabilistic

Polynomial time or
“Atlantic City Algorithms”

Example 1: Quantum Key Distribution
Example 2: Prime_Gen(k)

Quantum Key Distribution
Goal: Agree on a fixed number (k - l) of secret bits
Quantum Channel: Alice sends to Bob m photon

states ∈{—, | , /, \ }
Open Channel: They choose k = m/10 “sifted bits”

from the locations where Alice’s polarizers agree
with Bob’s observers. They further compare
random l (< k) “testing bits” in the k sifted bits to
detect eavesdropping. If eavesdropper not
detected the accept the remaining k - l shared
secret bits.

QKD Error Probabilities
• Completeness error: less than m/10 of Bob’s observers

agree with Alice’s polarizers
probability ≅ 3/m

This follows from the fact that the number of Bob’s
observers that agree with Alice’s polarizers is binomially
distributed in [0,1,..,m] with expected value m/2.

• Soundness error: Alice and Bob do not detect an
eavesdropper

probability = (¾)l

Eavesdropper’s attack strategy is to forward what it gets by
observing the quantum channel. She receives correctly a
photon state with probability ½. If she receives correctly,
then she succeeds, and if she receives wrong then she
succeeds with probability ½. The total success
probability for a photon state is ½ + ½ ⋅ ½ = ¾ .

Example: Prime_Gen(k)
Algorithm 4.7: Random k-bit Probabilistic Prime Generation
INPUT: k: a positive integer (input to be written to have size k)
OUTPUT: a k-bit random prime
Prime_Gen(k)
1. p ∈U (2k-1,2k-1] with p odd;
2. if Prime_Test(p) = NO, return (Prime_Gen(k));
3. Return (p)

Here we make use of Prime_Test (p) which is PP(Monte
Carlo) with ε = 1 and δ = 2-k. E.g., Solovay-Strassen
repeated k times.

Prime_Gen(k)
Prime_Gen(k) is an PP(Atlantic City) with ε > 1/2 and δ ≅ 2-k.
After k rounds the probability that the algorithm has halted

is at least ½ as proportion of primes in k-bit odd numbers
is about 1/k .

The time complexity of Prime_Gen(k) is bounded by O(k5).
This is polynomial in the size of the input, if the input k is
written to have size k. This can be done using the unary
representation.

Definition 4.7. The unary representation of a positive
natural number k is

1k = 111 … 1

k times

Efficient Algorithms

P ⊆ ZPP ⊆ PP(Monte Carlo) ⊆ BPP
PP(Las Vegas)

Definition4.6: An algorithm is said to be efficient if it is
deterministic or randomised with execution time bounded
from above by a polynomial in the size of the input.

Non-deterministic Polynomial Time NP
Example: Square-Freeness
Input: N a positive and odd composite integer
Question: Is N square-free? Answer YES if there exists no

prime p such that p2|N.
Solution: Use witness φ(N). If p2|N then p | gcd(N, φ(N))
An algorithm to recognise languages in NP has at each

step a finite number of possible moves. The algorithm
recognises L if there exists at least one sequence of
legal moves (recognition sequence) leading to the
terminating condition. Such a sequence may be difficult
to find, but its existence is can be verified in polynomial
time given a witness.

Complexity hierarchy
P ⊆ ZPP ⊆ PP(Monte Carlo) ⊆ NP ⊆ PP

Definition 4.10. We say that a language L is polynomially
reducible to another language L0 if there exists a
deterministic polynomially-bounded Turing machine M
which will convert each instance I ∈ L into instance I0 ∈
L0, such that I ∈ L if and only if I0 ∈ L0 .

Definition 4.11. A language L0 ∈ NP is NP-complete if any
L ∈ NP is polynomially reducible to L0.

Example: SAT is in NP, Knapsack is in NP

Non-Polynomial Bounds

Definition 4.12. A function f (n): N → R is said to be
unbounded by any polynomial in n (or, a non-
polynomially bounded quantity) if for any
polynomial p(n) there exists a natural number n0
such that f(n) > p(n), for all n > n0.

Definition 4.13. A function ε(n): N → R is said to be
a negligible in n if its inverse 1/ε(n) is a non-
polynomially bounded quantity.

Polynomial-time Indistinguishability
Definition 4.14. Let S be a set and E and E’ be subsets of S.

Denote by k = log2 |S|. A distinguisher D is a probabilistic
algorithm, which makes use of l random elements a ∈ S,
where l is bounded by a polynomial in k, and which halts
in time polynomial in k with output in {0,1}. D satisfies
D(a,E) = 1, if a ∈ E, and D(a,E’) = 1, if a ∈ E’. We set

Adv(D) = |Prob[D(a,E) = 1] – Prob[D(a,E’) = 1]| ,
where the probabilities are taken over the distribution of a.
If Adv(D) > 0, we say that D is a distinguisher for the sets
E and E’ with advantage Adv(D).

Definition 4.15. Let sets E and E’ and security parameter k be
as defined in Definition 4.14. Then E, E’ are said to be
polynomially indistiguishable, if there exists no
distinguisher for E, E’, for which Adv(D) is non-negligible
in k, for sufficiently large k.

	T-79.5502 Advanced Course in Cryptology
	Turing Machine
	Turing computation
	Deterministic Polynomial Time – Class P
	The finite state control unit of DIV3
	Polynomial-Time Computational Problems
	Von Neumann Architecture
	Order notations
	Basic Modular Arithmetic Operations
	Probabilistic Polynomial Time - PP
	Error Probabilities
	Always fast and always correct - ZPP
	Always Fast and Probably Correct- PP(MonteCarlo)
	Probably Fast and Always Correct� PP(Las Vegas)
	Primality Proof- �A PP(Las Vegas) Algorithm
	Probably Fast and Probably Correct BPP
	Quantum Key Distribution
	QKD Error Probabilities
	Example: Prime_Gen(k)
	Prime_Gen(k)
	Efficient Algorithms
	Non-deterministic Polynomial Time NP
	Complexity hierarchy
	Non-Polynomial Bounds
	Polynomial-time Indistinguishability

