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Introduction to cryptographic security 
problems
- Coin flipping
- Oblivious transfer: Rabin OT, 1-out-of-2 OT
Textbook: Section 1



Coin flipping over telephone

We start with an informal definition:
Property 1.1: Let A and B be sets. We call a 

function f: A→B magic if it satisfies the 
following two conditions:

(I) For every x∈A, it is easy to compute f(x),
while given any value y ∈ f(A) ⊂ B it is 
impossible to find any information of any x∈A
such that y = f(x).

(II) It is impossible to find x1 ∈ A and x2 ∈ A such 
that f(x1) = f(x2).



Protocol premises

Alice and Bob have agreed on
1. a large set A of integers 
2. a small set B of integers 
3. A magic function f: A→B (in the sense of 

Property 1.1)
4. An even number x ∈ A represents 

HEADS and an odd number x ∈ A 
represents TAILS 



Protocol
ALICE

1. Alice picks x ∈A and 
computes f(x); she
reads f(x) to Bob over
the phone

BOB

2. Bob writes down
the value a given by
Alice. Then Bob 
guesses HEADS or
TAILS and tells Alice 
his guess. 3. Alice receives Bob’s

guess. Then Alice 
reads x to Bob (or
sends it to Bob over
Internet) 

4. Bob receives x and 
computes f(x) and 
verifies if a = f(x). If
yes, Bob checks if x is 
even or odd.



Discussion
In Property 1.1: 

– What is easy, what is impossible? 
– How to quantify degree of difficulty?

Security requirements: 
– Alice cannot cheat. Bob has equal chances to 

get his guess right and Alice cannot change 
his chances during the protocol.

– Bob cannot cheat. 
– A third party cannot cheat. How could a third 

party cheat? 
– What can a party achieve by cheating? 



Rudimentary security analysis
Alice can cheat if:
• She can find an even x1 ∈ A and an odd 

x2 ∈ A such that f(x1) = f(x2). 
• Impossible by Property II of the magic f.
Bob can cheat if:
• Given a = f(x) ∈ B Bob can tell if x is 

even or odd. 
• Impossible by Property I of the magic f.



Security model and assumptions
Model
• What are the parties?
• Are the communications protected or not?
• Definition of the attacks (e.g. what it means that 

Bob can cheat)
• Security requirements (what the protocol wants 

to achieve, e.g, Bob has 50% chance to get his 
guess correct)

Assumptions
• Assumptions about the cryptographic primitives
• Other security assumptions



Explicitness
• Be explicit about all assumptions needed

– Do we assume the selection of x by Alice be uniform? 
• Be explicit about exact security services to be 

offered
– Coin flipping over telephone offers commitments, but 

no confidentiality, authentication or proof-of-
knowledge

• Be explicit about special cases in mathematics
– N = pq such that factoring of N is hard. If p ≈ q , 

factoring of N is not hard.



Exercise 1.2

Problem: Alice can decide HEADS or TAILS. This 
is not true coin flipping and may be an unfair 
advantage for some applications. Modify the 
protocol that Alice has no longer this advantage.

Solution:  Set
HEADS: Bob’s guess is correct
TAILS: Bob’s guess is incorrect

Then outcome of the protocol, HEADS or TAILS, 
may not be selected by Alice or Bob.  



Cryptologic research

Formalizes the relationship 
between mathematical 
properties of the primitives 
and the security of a 
cryptographic system or 
protocol

PRIMITIVES

CRYPTOGRAPHIC SYSTEM

SECURITY SYSTEM

e.g., assuming that one-
way functions exist, a 
secure cryptographic 
system exists, and vice 
versa.



Dolev-Yao Threat Model
Adversary called “Malice”
• He can obtain any message passing through the 

network.
• He is a legitimate user of the network, and thus in 

practice can initiate a conversation with any other user.
• He will have an opportunity to become a receiver to any 

principal.
• He can send message to any principal by impersonating 

any other principal.
Malice can be an individual adversary, a coalition of a 

group of adversaries, and he can, as a special case, be 
a legitimate principal in the protocol. 



What Malice cannot do
• guess random numbers drawn uniformly from a 

sufficiently large; 
• break perfect encryption, that is, without the knowledge 

of the secret key he cannot retrieve plaintext from a 
given ciphertext, nor create valid (!) ciphertext from given 
plaintext;

• break secure message authentication codes
• break public keys;
• invert one-way functions;
(these are all informal security assumptions about 

cryptographic primitives) 
• cannot access private areas of computing or 

communications environment.



Rabin OT
Two players: sender (Alice) and receiver (Bob)
Goal: Alice has one bit. Bob is allowed to try once to get the bit. His

success probability is ½ . Alice does not know, if Bob gets the bit or
not. 

Protocol:
1. Alice sets up an RSA cryptosystem: p, q, n, a, b, with ab ≡ 1 mod Φ(n).
2. Alice encrypts the bit s, gets c = {encode(s)}b mod n, and sends c, b

and n to Bob.
3. Bob selects x, 0 < x < n, at random, computes y = x2 mod n, and 

sends y to Alice.
4. Alice finds the four square roots of y and picks one, say z, of them

and sends it to Bob. 
5. If z ≠ ± x mod n, Bob can factor n, compute a = b-1 mod Φ(n), and 

decrypt c, with probability ½.  Alice does not know if z ≠ ± x mod n.



1-out-of-2 OT using RSA
Two players: sender (Alice) and receiver (Bob)
Goal: Alice has two secret bits. Bob is allowed to see exactly one

of them. Alice does not know, which of the two bits Bob gets. 
Alice’s inputs:  two bits a0 and a1

Bob’s input: one bit s
Protocol: OT(a0, a1; s)
Output to Alice: nothing
Output to Bob: as = (s ⊕1) a0 ⊕ s a1

Next we see how to implement OT(a0, a1; s) assuming Bob is 
honest, which is the case of  “private information retrieval”.



OT(a0, a1; s)

PREMISES: Alice sets up an RSA cryptosystem: p, q, n, a, b, with ab ≡
1 mod ф(n), and sends n and b to Bob.

ASSUMPTION: Hard-core bit for the RSA function: For randomly
chosen x, given y, n, b, where y = xb mod n finding the lsb of x is 
essentially as hard as finding all of x (see Chapter 9, Lecture 4)

1. Bob selects a random m with lsb rs and computes the ciphertext
cs = mb mod n.  Bob  selects c1-s at random, and sends cs and  c1-s, 
that is, c0 and c1 to Alice.

2. Alice decrypts c0 and c1 and gets the lsb:s r0 and r1 of the 
plaintexts. She then conceals the bits a0 and a1 by computing a’0

= r0 + a0 (mod 2) and a’1 = r1 + a1  mod 2, and sends a’0 and a’1 to 
Bob.  

3. Bob then gets as from a’s as he knows rs. Alice does not know s.
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