RSA-OAEP and Cramer-Shoup

Olli Ahonen

Laboratory of Physics, TKK

11th Dec 2007
T-79.5502 Advanced Cryptology

Part |: Outline

<
e RSA, OAEP and RSA-OAEP

e Preliminaries for the proof
e Proof of IND-CCAZ2 security for RSA-OAEP

- Setup and process

— Decryption oracle service
— Likelihood of success

— Fujisaki's method

e Safe modulus size

Basic RSA
o]

e Random primes p and q

e Public N = pq; private ®(N)=(p-1)(g-1)

e Random public e € 7%y,

e Private d such that ed mod ®(N) = 1

e Ciphertext c = m® mod N

e Decryption: m=c?mod N

e IND-CPA (i.e., semantically) secure

Basic RSA: not secure enough
S

e Assume: Alice acts as a decryption oracle, if
the message appears random

e Malice wishes to decrypt c = m® mod N
- Picks random r e 7%,
— Sends to Alice ¢'=rec mod N
- Receives rm mod N
-~ Learns m by division mod N

Optimal asymmetric encryption
padding (OAEP)

e M. Bellare and P. Rogaway in 1994
-~ Add randomness
— Mix the input

- Encrypt with a one-way trapdoor permutation
(OWTP), e.g., RSA

e IND-CCAZ2 secure
— Assuming the OWTP really is one-way

e Practically efficient

OAEP structure
«

¢ kO < |N |/ 2 Plaintext Redundant
P H aSh input input Random input
functions G m | 0" r
and H v I
e S||tinputto i o
encryption S L
¢ Eg: B Siggi
IN| = 2048 Y4 ¥
k, = k, = 160 | Y
A) t

W. Mao, Modern Cryptography: Theory and Practice (Prentice Hall, 2004)

RSA-OAEP algorithm

|

o |[N|=|m|+ k, + ky, 2% and 2% negligible
e Encryption

- r=rand(k,); s = (m||0..0)®G(r); t = rdH(s)

- ¢ =(S||t)® mod N
e Decryption

— S|[t=cmod N; |s| = |m| + kq; |t| = Kk,

- u=1teH(s);, v=sdG(u)

— If v ==m||0*", extract m; else reject

IND-CCAZ2 game

c e s _

e Oracle provides PPT L Decnmow

Malice with requested M

decryptions (except for c*) A mo, m1 i
e Malice is capable if he L

guesses which of the two (I: i

plaintexts ¢* encrypts B | hosencphernons
e Required: non-negligible bectyptons

Adv = 2 Pr["correct guess" -

| hiStory] -1 Educated guess of Oor 1

om0 "0

aaljoeid pue Aiosy | AydeisbojdAin uispopy ‘0N "M

Random oracle

S
e |dealized hash function G: {0,1} — {0,1}"

e Output
— Uniformly random (really!)
— Deterministic
— Efficient

e Imaginary

e Computationally indistinguishable from a
good real-world hash function

Simulating a random oracle
-

e At startup, initialize G-list to empty
e When value G(a) is queried
— Lookup a in G-list

— If not found
e Generate random value for G(a)

e Store (a, G(a)) in the G-list
-~ Return the stored value

e Precise local simulation in PPT

Proof of IND-CCAZ2 security
S

e General idea:
d algorithm A that is IND-CCAZ2 capable
= OWTP f(e.g., RSA) can be inverted
L=
OWTP fis not invertible
= IND-CCAZ2 security

e "Reduction to contradiction”
e PPT algorithms, non-negligible advantages

RSA-Inverting algorithm M
S

e Input: Random point ¢c* = f(w*)
e Output: Preimage w* = f-1(c*)
e Encapsulates IND-CCA2 capable A

e Random-oracle simulator of the OAEP hash
functions G and Hfor A
e Decryption oracle for A

- Based on the G- and H-lists
- May reject even if A submits a valid ciphertext

w* = s¥|t* = £1(c”)
Inversion process

o]
e M plays two IND-CCA2 games with A
- Round 1: M challenges A with ¢*

e c¢* has nothing to do with (m,, m,)!

- Round 2: M challenges A with ¢*, = ¢*a® mod N
e Random a € Z*,, (probability of bad a negligible)

e If A queries H(s*) and H(s*,), M finds f-1(c*)
- PT lattice method by Fujisaki et al.
e How probable are the queries?

e \What if A discovers ¢* is a hoax?

s =(m||0..0)dG(r)
t = reH(s)
¢ = f(sl|t)

Decryption oracle service
c

e Maintain a list of potential ciphertext-plaintext
tuples {(f(w;), w;, v))};
For each (g, G(g)) for each (h, H(h))
w = h||(gdH(h)); v = G(g)dh
o If lw)=c* w,=w*=Ff"c"); success!
e [odecryptc
- Ifc=fw,) and v,= A||0..0, return A=m
— Else reject

s||t = f-(c)
r = toH(s)
m||0..0 = s&G(r)

Quality of the decryption service
-

e If A creates a valid ¢ without G or H, M
rejects c illegally

e (s, H(s)) missing = Pr["r correct"] = 2-ko
= Pr[s®G(r) = A||0x] = 2k

e Similarly for missing (r, G(r))

e If G(r) or H(s) not queried, reject is correct
except for (negligible) Pr ~ 2-ko + 2-ki

e Good decryption quality

sIt* = (c”)
r*=t*oH(s*)
m*||0..0 = s*dG(r*)

Likelthood of successful inversion
. of 3

e Define the following events

e DBad = M rejects a valid ciphertext
e AskH = A has queried for H(s")

e AskG = A has queried for G(r*)

e AskH or AskG may reveal the deception in c*
- Bad = AskH U AskG U DBad

e AWins = A can correctly guess the IND-
CCAZ2 game challenge bit b

Pr{A,B]
= Pr[A|B] Pr{B]
< Pr(B]

Likelihood of successful inversion
G 2 o
e Pr[AWins|~Bad]
= Pr[AWins,~Bad] / Pr["Bad] = 1/2
= Pr[AWins,~Bad] = (1 — Pr[Bad])/2
e Adv + 1/2 = Pr[AWins]
= Pr[AWins,7Bad] + Pr[AWins,Bad]
< Pr[AWins,~Bad] + Pr[Bad]
= Pr[Bad]/2 + 1/2
e = Pr[Bad] = 2Adv

Pr[A U B]
= Pr[A] + Pr[B] — Pr[A,B]
< Pr[A] + Pr[B]

Likelthood of successful inversion

G : -

e Pr[Bad] < Pr[AskH U AskG] + Pr[DBad]
= Pr[AskH] + Pr["AskH,AskG] + Pr[DBad]
< Pr[AskH] + Pr[AskG|~AskH] + Pr[DBad]

e AskG|~AskH = G(r*) has been queried when
H(s*) has not = Pr[AskG|~AskH] = 2-o

e Pr[AskH] = 2(Adv — (20 + 2-ki-1))

e M obtains s* with non-negligible probability
— After this, M can let A know the truth about c¢*

s™|t* = f-1(c”)

Fujisaki's method

o]
o [s*| > |w*|/2; Int(t*) < VN
e Use s™ and s, to solve for Int(f*) in
(2K Int(s*) + Int(t*))e = ¢* (mod N)
e g = larger H-list length
e For each pair (s,s,), solve for Int(f) twice
e = Inversion takes time 27, + g°O((log,N)?)

7, = running time of IND-CCA2 on RSA-OAEP

Practically safe parameters
c

e Evaluating H and G is very efficient in reality
e Dedicated attacker may make g = 2°0 queries

e Now RSA inversion time > 2100 >» 286 for the
Number Field Sieve method, if |[N| = 1024

e |N| = 2048 considered safe
— NFS takes time 2116

e k, = k; = 160 considered safe
e Up to 84% of s||t can be actual message m

Part |l: OQutline
« /7

e Decisional Diffie-Hellman problem

e Cramer-Shoup scheme
- Key setup
- Encryption and decryption

e Overview of proof of IND-CCA2 security
— DDH reduction

Decisional Diffie-Hellman problem
-

e Given
— Description of an abelian group G

- (9. 9% 9° g°) € G* g = gen(G)
e Is ab = ¢ (mod ord(G))?
e Easy in supersingular elliptic-curve groups
e Hard in groups of finite fields

Cramer-Shoup

S
e R. Cramer and V. Shoup in 1998

- CCA2-enhanced ElGamal encryption
— More public and private parameters
— Hashing

e IND-CCAZ2 secure

— Assuming Finite-Field Decisional D-H is hard
e Data integrity check
e Resource need ~ twice that of EIGamal

Cramer-Shoup key setup
o]
Large prime q = ord(G); G = plaintext space
Pick random g,, g, € G
Pick random Xy, X, ¥4, ¥», Z € [0,q)

C =g,¥9,% d = g.'9,% h = g4*
Choose a hash function H: G3 — [0,q)
Public key: (g4, 9, C, d, h, H)

Private key: (X4, X5, V1, Vo, Z)

Cramer-Shoup operation
c

e Encryption
- Message m € G; Pick random r € [0,q)
- U =g/ U, =g e=hm
- a=H(uy, u,, e);, v=cde
- The ciphertext is (u4, u,, €, v)
e Decryption
- a=H(uy, u,, e)
_ If u1x1+y1au2x2+yza =v,m= e/u1Z
— Else reject

Proof of IND-CCAZ2 security

o]
e Same general idea as with RSA-OAEP:
d algorithm A that is IND-CCAZ2 capable

= Finite-Field Decisional Diffie-Hellman can be
answered efficiently by M,

=
FFDDH is hard = IND-CCAZ2 security
e Better than the proof for RSA-OAEP

— No need for controversial random oracles
-~ Reduction DDH — IND-CCAZ2 is linear

Reduction

G
e M,: Can the arbitrary input (g4, 9-, U4, U,) €
G* be a Diffie-Hellman quadruple? (DDH)

e Play the IND-CCA2 game with A

- Receive chosen (m,, m,), challenge with C*
e Inputis a DHq = C* encrypts m,
e Input is not a DHq = C* uniformly distributed

e Based on A's guess on b, M, can decide
whether (g4, 9,, U4, U,) is @ DHQq or not

