RSA-OAEP and Cramer-Shoup

Olli Ahonen
Laboratory of Physics, TKK

11th Dec 2007
T-79.5502 Advanced Cryptology
Part I: Outline

- RSA, OAEP and RSA-OAEP
- Preliminaries for the proof
- Proof of IND-CCA2 security for RSA-OAEP
 - Setup and process
 - Decryption oracle service
 - Likelihood of success
 - Fujisaki's method
- Safe modulus size
Basic RSA

- Random primes p and q
- Public $N = pq$; private $\Phi(N) = (p - 1)(q - 1)$
- Random public $e \in \mathbb{Z}_{\Phi(N)}^*$
- Private d such that $ed \mod \Phi(N) = 1$
- Ciphertext $c = m^e \mod N$
- Decryption: $m = c^d \mod N$
- IND-CPA (i.e., semantically) secure
Basic RSA: not secure enough

- Assume: Alice acts as a decryption oracle, if the message appears random
- Malice wishes to decrypt $c = m^e \mod N$
 - Picks random $r \in \mathbb{Z}_N^*$
 - Sends to Alice $c' = r^e c \mod N$
 - Receives $rm \mod N$
 - Learns m by division $\mod N$
Optimal asymmetric encryption padding (OAEP)

- M. Bellare and P. Rogaway in 1994
 - Add randomness
 - Mix the input
 - Encrypt with a one-way trapdoor permutation (OWTP), e.g., RSA

- IND-CCA2 secure
 - Assuming the OWTP really is one-way

- Practically efficient
OAEP structure

- $k_0 < |N|/2$
- Hash functions G and H
- $s||t$ input to encryption
- E.g:
 - $|N| = 2048$
 - $k_0 = k_1 = 160$

RSA-OAEP algorithm

- $|N| = |m| + k_1 + k_0$; 2^{-k_0} and 2^{-k_1} negligible
- Encryption
 - $r = \text{rand}(k_0)$; $s = (m||0..0) \oplus G(r)$; $t = r \oplus H(s)$
 - $c = (s||t)^e \mod N$
- Decryption
 - $s||t = c^d \mod N$; $|s| = |m| + k_1$; $|t| = k_0$
 - $u = t \oplus H(s)$; $v = s \oplus G(u)$
 - If $v == m||0^{k_1}$, extract m; else reject
IND-CCA2 game

- Oracle provides PPT Malice with requested decryptions (except for c^*).
- Malice is capable if he guesses which of the two plaintexts c^* encrypts.
- Required: non-negligible $\text{Adv} = 2 \Pr[\text{"correct guess" | history}] - 1$.
Random oracle

- Idealized hash function $G: \{0,1\}^k \rightarrow \{0,1\}^n$
- Output
 - Uniformly random (really!)
 - Deterministic
 - Efficient
- Imaginary
- Computationally indistinguishable from a good real-world hash function
Simulating a random oracle

- At startup, initialize \mathcal{G}-list to empty
- When value $\mathcal{G}(a)$ is queried
 - Lookup a in \mathcal{G}-list
 - If not found
 - Generate random value for $\mathcal{G}(a)$
 - Store $(a, \mathcal{G}(a))$ in the \mathcal{G}-list
 - Return the stored value
- Precise local simulation in PPT
Proof of IND-CCA2 security

- General idea:
 - \(\exists \) algorithm \(A \) that is IND-CCA2 capable
 - \(\Rightarrow \) OWTP \(f \) (e.g., RSA) can be inverted
 - \(\Leftrightarrow \)
 - OWTP \(f \) is not invertible
 - \(\Rightarrow \) IND-CCA2 security
- "Reduction to contradiction"
- PPT algorithms, non-negligible advantages
RSA-inverting algorithm M

- Input: Random point $c^* = f(w^*)$
- Output: Preimage $w^* = f^{-1}(c^*)$
- Encapsulates IND-CCA2 capable A
- Random-oracle simulator of the OAEP hash functions G and H for A
- Decryption oracle for A
 - Based on the G- and H-lists
 - May reject even if A submits a valid ciphertext
Inversion process

- M plays two IND-CCA2 games with A
 - Round 1: M challenges A with c^*
 - c^* has nothing to do with (m_0, m_1)!
 - Round 2: M challenges A with $c^*_2 = c^* \alpha^e \mod N$
 - Random $\alpha \in \mathbb{Z}_N^*$ (probability of bad α negligible)

- If A queries $H(s^*)$ and $H(s^*_2)$, M finds $f^{-1}(c^*)$
 - PT lattice method by Fujisaki et al.

- How probable are the queries?
- What if A discovers c^* is a hoax?
Decryption oracle service

- Maintain a list of potential ciphertext-plaintext tuples \(\{(f(w_i), w_i, v_i)\}_i \)

 For each \((g, G(g))\) for each \((h, H(h))\)

 \[w = h || (g \oplus H(h)); \quad v = G(g) \oplus h \]

- If \(f(w_i) = c^* \), \(w_i = w^* = f^{-1}(c^*) \); success!

- To decrypt \(c \)
 - If \(c = f(w_i) \) and \(v_i = \Delta || 0..0 \), return \(\Delta = m \)
 - Else reject
Quality of the decryption service

- If A creates a valid c without G or H, M rejects c illegally
- $(s, H(s))$ missing $\Rightarrow \Pr["r correct"] = 2^{-k_0}$
 $\Rightarrow \Pr[s \oplus G(r) = \Delta || 0^{k_1}] = 2^{-k_1}$
- Similarly for missing $(r, G(r))$
- If $G(r)$ or $H(s)$ not queried, reject is correct except for (negligible) $\Pr \sim 2^{-k_0} + 2^{-k_1}$
- Good decryption quality
Likelihood of successful inversion

- Define the following events
- **DBad** = M rejects a valid ciphertext
- **AskH** = A has queried for $H(s^*)$
- **AskG** = A has queried for $G(r^*)$
- **AskH** or **AskG** may reveal the deception in c^*
 - **Bad** = **AskH** \cup **AskG** \cup **DBad**
- **AWins** = A can correctly guess the IND-CCA2 game challenge bit b

$s^*||t^* = f^{-1}(c^*)$
$r^* = t^* \oplus H(s^*)$
$m^*||0..0 = s^* \oplus G(r^*)$
Likelihood of successful inversion

- \(\Pr[AWins | \neg Bad] \)
 \[\equiv \frac{\Pr[AWins, \neg Bad]}{\Pr[\neg Bad]} = \frac{1}{2} \]
 \[\Rightarrow \Pr[AWins, \neg Bad] = \frac{(1 - \Pr[Bad])}{2} \]

- \(\text{Adv} + \frac{1}{2} = \Pr[AWins] \)
 \[\equiv \Pr[AWins, \neg Bad] + \Pr[AWins, Bad] \]
 \[\leq \Pr[AWins, \neg Bad] + \Pr[Bad] \]
 \[= \frac{\Pr[Bad]}{2} + \frac{1}{2} \]

- \(\Rightarrow \Pr[Bad] \geq 2\text{Adv} \)
Pr[A U B]
= Pr[A] + Pr[B] – Pr[A, B]
≤ Pr[A] + Pr[B]

Likelihood of successful inversion

- \(\Pr[\text{Bad}] \leq \Pr[\text{AskH} \cup \text{AskG}] + \Pr[\text{DBad}] \)

 = \(\Pr[\text{AskH}] + \Pr[\neg \text{AskH}, \text{AskG}] + \Pr[\text{DBad}] \)

 \leq \Pr[\text{AskH}] + \Pr[\text{AskG} | \neg \text{AskH}] + \Pr[\text{DBad}]

- \(\text{AskG} | \neg \text{AskH} = G(r^*) \) has been queried when \(H(s^*) \) has not \(\Rightarrow \) \(\Pr[\text{AskG} | \neg \text{AskH}] = 2^{-k_0} \)

- \(\Pr[\text{AskH}] \geq 2(\text{Adv} – (2^{-k_0} + 2^{-k_1-1})) \)

- \(M \) obtains \(s^* \) with non-negligible probability
 - After this, \(M \) can let \(A \) know the truth about \(c^* \)
Fujisaki's method

- $|s^*| > |w^*|/2; \text{Int}(t^*) < \sqrt{N}$
- Use s^* and s^*_2 to solve for $\text{Int}(t^*)$ in
 $$(2^{k_0} \text{Int}(s^*) + \text{Int}(t^*))^e \equiv c^* \pmod{N}$$
- $q = \text{larger H-list length}$
- For each pair (s,s^*_2), solve for $\text{Int}(t)$ twice
- \Rightarrow Inversion takes time $2\tau_A + q^2O((\log_2 N)^3)$
 $\tau_A = \text{running time of IND-CCA2 on RSA-OAEP}$
Practically safe parameters

- Evaluating H and G is very efficient in reality
- Dedicated attacker may make $q \approx 2^{50}$ queries
- Now RSA inversion time $> 2^{100} \gg 2^{86}$ for the Number Field Sieve method, if $|N| = 1024$
- $|N| = 2048$ considered safe
 - NFS takes time 2^{116}
- $k_0 = k_1 = 160$ considered safe
- Up to 84% of $s||t$ can be actual message m
Part II: Outline

- Decisional Diffie-Hellman problem
- Cramer-Shoup scheme
 - Key setup
 - Encryption and decryption
- Overview of proof of IND-CCA2 security
 - DDH reduction
Decisional Diffie-Hellman problem

- Given
 - Description of an abelian group G
 - $(g, g^a, g^b, g^c) \in G^4; g = \text{gen}(G)$
- Is $ab \equiv c \pmod{\text{ord}(G)}$?
- Easy in supersingular elliptic-curve groups
- Hard in groups of finite fields
Cramer-Shoup

- R. Cramer and V. Shoup in 1998
 - CCA2-enhanced ElGamal encryption
 - More public and private parameters
 - Hashing
- IND-CCA2 secure
 - Assuming Finite-Field Decisional D-H is hard
- Data integrity check
- Resource need ~ twice that of ElGamal
Cramer-Shoup key setup

- Large prime $q = \text{ord}(G)$; $G = \text{plaintext space}$
- Pick random $g_1, g_2 \in G$
- Pick random $x_1, x_2, y_1, y_2, z \in [0,q)$
- $c = g_1^{x_1}g_2^{x_2}$; $d = g_1^{y_1}g_2^{y_2}$; $h = g_1^z$
- Choose a hash function $H: G^3 \rightarrow [0,q)$
- Public key: (g_1, g_2, c, d, h, H)
- Private key: (x_1, x_2, y_1, y_2, z)
Cramer-Shoup operation

● Encryption
 - Message $m \in G$; Pick random $r \in [0,q)$
 - $u_1 = g_1^r$; $u_2 = g_2^r$; $e = h^r m$
 - $\alpha = H(u_1, u_2, e)$; $\nu = c^r d^{r \alpha}$
 - The ciphertext is (u_1, u_2, e, ν)

● Decryption
 - $\alpha = H(u_1, u_2, e)$
 - If $u_1^{x_1 + y_1 \alpha} u_2^{x_2 + y_2 \alpha} = \nu$, $m = e / u_1^z$
 - Else reject
Proof of IND-CCA2 security

- Same general idea as with RSA-OAEP:
 - ∃ algorithm A that is IND-CCA2 capable
 - \Rightarrow Finite-Field Decisional Diffie-Hellman can be answered efficiently by M_A
 - \Leftrightarrow
 - FFDDH is hard \Rightarrow IND-CCA2 security

- Better than the proof for RSA-OAEP
 - No need for controversial random oracles
 - Reduction DDH \rightarrow IND-CCA2 is linear
Reduction

- M_A: Can the arbitrary input $(g_1, g_2, u_1, u_2) \in G^4$ be a Diffie-Hellman quadruple? (DDH)
- Play the IND-CCA2 game with A
 - Receive chosen (m_0, m_1), challenge with C^*
- Input is a DHq $\Rightarrow C^*$ encrypts m_b
- Input is not a DHq $\Rightarrow C^*$ uniformly distributed
- Based on A's guess on b, M_A can decide whether (g_1, g_2, u_1, u_2) is a DHq or not