
RSA-OAEP and Cramer-Shoup

Olli Ahonen
Laboratory of Physics, TKK

11th Dec 2007
T-79.5502 Advanced Cryptology

2

Part I: Outline

RSA, OAEP and RSA-OAEP
Preliminaries for the proof
Proof of IND-CCA2 security for RSA-OAEP
– Setup and process
– Decryption oracle service
– Likelihood of success
– Fujisaki's method

Safe modulus size

3

Basic RSA

Random primes p and q
Public N = pq; private Φ(N) = (p - 1)(q - 1)
Random public e œ *Φ(N)

Private d such that ed mod Φ(N) = 1
Ciphertext c = me mod N
Decryption: m = cd mod N
IND-CPA (i.e., semantically) secure

4

Basic RSA: not secure enough

Assume: Alice acts as a decryption oracle, if
the message appears random
Malice wishes to decrypt c = me mod N
– Picks random r œ *N

– Sends to Alice c' = rec mod N
– Receives rm mod N
– Learns m by division mod N

5

Optimal asymmetric encryption
padding (OAEP)

M. Bellare and P. Rogaway in 1994
– Add randomness
– Mix the input
– Encrypt with a one-way trapdoor permutation

(OWTP), e.g., RSA

IND-CCA2 secure
– Assuming the OWTP really is one-way

Practically efficient

6

OAEP structure

k0 < |N|/2
Hash
functions G
and H
s||t input to
encryption
E.g:
|N| = 2048
k0 = k1 = 160

W. Mao, Modern Cryptography: Theory and Practice (Prentice Hall, 2004)

7

RSA-OAEP algorithm

|N| = |m| + k1 + k0; 2-k0 and 2-k1 negligible
Encryption
– r = rand(k0); s = (m||0..0)∆G(r); t = r∆H(s)
– c = (s||t)e mod N

Decryption
– s||t = cd mod N; |s| = |m| + k1; |t| = k0

– u = t∆H(s); v = s∆G(u)
– If v == m||0k1, extract m; else reject

8

IND-CCA2 game

Oracle provides PPT
Malice with requested
decryptions (except for c*)
Malice is capable if he
guesses which of the two
plaintexts c* encrypts
Required: non-negligible
Adv = 2 Pr["correct guess"
| history] - 1

W
. M

ao, M
odern C

ryptography: Theory and P
ractice

9

Random oracle

Idealized hash function : {0,1}k → {0,1}n

Output
– Uniformly random (really!)
– Deterministic
– Efficient

Imaginary
Computationally indistinguishable from a
good real-world hash function

10

Simulating a random oracle

At startup, initialize -list to empty
When value (a) is queried
– Lookup a in -list
– If not found

Generate random value for (a)
Store (a, (a)) in the -list

– Return the stored value
Precise local simulation in PPT

11

Proof of IND-CCA2 security

General idea:
$ algorithm A that is IND-CCA2 capable
fl OWTP f (e.g., RSA) can be inverted
¤

OWTP f is not invertible
fl IND-CCA2 security

"Reduction to contradiction"
PPT algorithms, non-negligible advantages

12

RSA-inverting algorithm M

Input: Random point c* = f(w*)
Output: Preimage w* = f -1(c*)
Encapsulates IND-CCA2 capable A
Random-oracle simulator of the OAEP hash
functions G and H for A
Decryption oracle for A
– Based on the G- and H-lists
– May reject even if A submits a valid ciphertext

13

Inversion process

M plays two IND-CCA2 games with A
– Round 1: M challenges A with c*

c* has nothing to do with (m0, m1)!

– Round 2: M challenges A with c*2 = c*αe mod N
Random α œ *N (probability of bad α negligible)

If A queries H(s*) and H(s*2), M finds f -1(c*)
– PT lattice method by Fujisaki et al.

How probable are the queries?
What if A discovers c* is a hoax?

w* = s*||t* = f -1(c*)

14

Decryption oracle service

Maintain a list of potential ciphertext-plaintext
tuples {(f(wi), wi, vi)}i

For each (g, G(g)) for each (h, H(h))
w = h||(g∆H(h)); v = G(g)∆h

If f(wi) = c*, wi = w* = f -1(c*); success!
To decrypt c
– If c = f(wi) and vi = Δ||0..0, return Δ = m
– Else reject

s = (m||0..0)∆G(r)
t = r∆H(s)
c = f(s||t)

15

Quality of the decryption service

If A creates a valid c without G or H, M
rejects c illegally
(s, H(s)) missing fl Pr["r correct"] = 2-k0

fl Pr[s∆G(r) = Δ||0k1] = 2-k1

Similarly for missing (r, G(r))
If G(r) or H(s) not queried, reject is correct
except for (negligible) Pr ~ 2-k0 + 2-k1

Good decryption quality

s||t = f -1(c)
r = t∆H(s)
m||0..0 = s∆G(r)

16

Likelihood of successful inversion

Define the following events
DBad = M rejects a valid ciphertext
AskH = A has queried for H(s*)
AskG = A has queried for G(r*)
AskH or AskG may reveal the deception in c*
– Bad = AskH U AskG U DBad

AWins = A can correctly guess the IND-
CCA2 game challenge bit b

s*||t* = f -1(c*)
r* = t*∆H(s*)
m*||0..0 = s*∆G(r*)

1 of 3

17

Likelihood of successful inversion

Pr[AWins|¬Bad]
≡ Pr[AWins,¬Bad] / Pr[¬Bad] = 1/2
fl Pr[AWins,¬Bad] = (1 – Pr[Bad])/2
Adv + 1/2 = Pr[AWins]
≡ Pr[AWins,¬Bad] + Pr[AWins,Bad]
≤ Pr[AWins,¬Bad] + Pr[Bad]
= Pr[Bad]/2 + 1/2
fl Pr[Bad] ≥ 2Adv

Pr[A,B]
= Pr[A|B] Pr[B]
≤ Pr[B]

2 of 3

18

Likelihood of successful inversion

Pr[Bad] ≤ Pr[AskH U AskG] + Pr[DBad]
= Pr[AskH] + Pr[¬AskH,AskG] + Pr[DBad]
≤ Pr[AskH] + Pr[AskG|¬AskH] + Pr[DBad]
AskG|¬AskH = G(r*) has been queried when
H(s*) has not fl Pr[AskG|¬AskH] = 2-k0

Pr[AskH] ≥ 2(Adv – (2-k0 + 2-k1-1))
M obtains s* with non-negligible probability
– After this, M can let A know the truth about c*

Pr[A U B]
= Pr[A] + Pr[B] – Pr[A,B]
≤ Pr[A] + Pr[B]

3 of 3

19

Fujisaki's method

|s*| > |w*|/2; Int(t*) < √N
Use s* and s*2 to solve for Int(t*) in
(2k0 Int(s*) + Int(t*))e ≡ c* (mod N)
q = larger H-list length
For each pair (s,s2), solve for Int(t) twice
fl Inversion takes time 2tA + q2 ((log2N)3)

tA = running time of IND-CCA2 on RSA-OAEP

s*||t* = f -1(c*)

20

Practically safe parameters

Evaluating H and G is very efficient in reality
Dedicated attacker may make q ≈ 250 queries
Now RSA inversion time > 2100 á 286 for the
Number Field Sieve method, if |N| = 1024
|N| = 2048 considered safe
– NFS takes time 2116

k0 = k1 = 160 considered safe
Up to 84% of s||t can be actual message m

21

Part II: Outline

Decisional Diffie-Hellman problem
Cramer-Shoup scheme
– Key setup
– Encryption and decryption

Overview of proof of IND-CCA2 security
– DDH reduction

22

Decisional Diffie-Hellman problem

Given
– Description of an abelian group G
– (g, ga, gb, gc) œ G4; g = gen(G)

Is ab ≡ c (mod ord(G))?
Easy in supersingular elliptic-curve groups
Hard in groups of finite fields

23

Cramer-Shoup

R. Cramer and V. Shoup in 1998
– CCA2-enhanced ElGamal encryption
– More public and private parameters
– Hashing

IND-CCA2 secure
– Assuming Finite-Field Decisional D-H is hard

Data integrity check
Resource need ~ twice that of ElGamal

24

Cramer-Shoup key setup

Large prime q = ord(G); G = plaintext space
Pick random g1, g2 œ G
Pick random x1, x2, y1, y2, z œ [0,q)
c = g1

x1g2
x2; d = g1

y1g2
y2; h = g1

z

Choose a hash function H: G3 → [0,q)
Public key: (g1, g2, c, d, h, H)
Private key: (x1, x2, y1, y2, z)

25

Cramer-Shoup operation

Encryption
– Message m œ G; Pick random r œ [0,q)
– u1 = g1

r; u2 = g2
r; e = hrm

– α = H(u1, u2, e); v = crdrα

– The ciphertext is (u1, u2, e, v)
Decryption
– α = H(u1, u2, e)
– If u1

x1+y1αu2
x2+y2α = v, m = e/u1

z

– Else reject

26

Proof of IND-CCA2 security

Same general idea as with RSA-OAEP:
$ algorithm A that is IND-CCA2 capable
fl Finite-Field Decisional Diffie-Hellman can be

answered efficiently by MA

¤

FFDDH is hard fl IND-CCA2 security
Better than the proof for RSA-OAEP
– No need for controversial random oracles
– Reduction DDH → IND-CCA2 is linear

27

Reduction

MA: Can the arbitrary input (g1, g2, u1, u2) œ
G4 be a Diffie-Hellman quadruple? (DDH)
Play the IND-CCA2 game with A
– Receive chosen (m0, m1), challenge with C*

Input is a DHq fl C* encrypts mb

Input is not a DHq fl C* uniformly distributed
Based on A's guess on b, MA can decide
whether (g1, g2, u1, u2) is a DHq or not

