RSA-OAEP

T-79.5502 Advanced Course in Cryptology,
Spring 2006

Vesa Vaskelainen

RSA-OAEP — p.1/28

Overview

Introduction

The Optimal Asymmetric Encryption Padding
Random Oracle Model for Security Proof
RSA-OAEP

A reduction based on Random Oracle Model

RSA-OAEP — p.2/28

Introduction

* Asymmetric encryption had before Bellare and
Rogaway’s invention widely-recognized gap between
practical schemes and provably-secure ones (IND-CCA2)

* The goal of Bellare and Rogaway was to do asymmetric
encryption in a way as efficient as any mechanism at

that time suggested and to achieve provable security
against IND-CCA2

* |n the setup we consider a sender who holds a k-bit to
k-bit trapdoor permutation f and wants to transmit a
message = to a receiver who holds the inverse
permutation 1.

RSA-OAEP — p.3/28

* Practitioners want that encryption should require just
one computation of f and decryption should require just
one computation of f~! and also the length of the
enciphered text should be precisely £ and the length n of
the text x that can be encrypted is close to k.

e RSA-OAEP meets the above constraints and it has been
widely recognized by the practitioners so that the
scheme has been accepted as the RSA encryption
standard under industrial and international
standardization organizations.

* Next The Optimal Asymmetric Encryption Padding will
be described.

RSA-OAEP — p.4/28

Jptimal Asymmetric Encryption Padding

* M. Bellare and P. Rogaway. Optimal asymmetric
encryption. Advances in Cryptology - Proceedings of

EUROCRYPT 94.
* randomized message padding technique
e domain of a one-way trapdoor permutation (OWTP)

e The RSA and Rabin functions are the best-known
OWTP

* Figure 15.1. We fix the length of the plaintext message
as n = k — kg — k1 bits, (shorter messages can be
suitably padded to this length). The OAEP makes use of
two hash functions: a “generator”

G : {0,1}* — {0,1}"** and a “hash function”
H :{0,1}"F — 0,1} ko,

RSA-OAEP — p.5/28

* An OAEP based public-key encryption scheme can be
viewed as a sequentially combined transformation.

e Plaintext —9%4EP Domain of OWTP —OWTP
Ciphertext

RSA-OAEP — p.6/28

Central ldea Behind the Transformation

* Mixing of Different Algebraic Structures

* Plaintext Randomization

* Data Integrity Protection, plaintext awareness
* Active attacks are prevented

* |f randomized padding output has a good random
distribution over the input message space of the OWTP

RSA-OAEP — p.7/28

Random Oracle Model

A random oracle is a powerful and imaginary function
which is deterministic and efficient and has uniform
output values.

Bellare and Rogaway’'s model for security proof is called
random oracle model (ROM)

a special agent, Simon Simulator is also used

Simon simulates the behavior of everybody's random
oracles

RSA-OAEP — p.8/28

How Simon Simulates

* For oracle G for example, Simon maintains a G-list
which contains all the pairs (a, G(a))

* for each query a, Simon checks whether or not a is
already in the list; if it is, he returns GG(a) as the query
result; otherwise, he invents a new value for G(a) at
uniformly random in the range of G and returns this new
value as the query result and archive the new pair
(a,G(a)) in the list.

e simulated (G is deterministic and uniform

RSA-OAEP — p.9/28

* Simon can build the list so that the pairs are sorted by
the first element. Then there is no need to apply a
sorting algorithm. For each query, a search through a
sorted list of IV elements can be done in log NV time, in
PPT in the size of elements.

e simulated G is efficient

Lemma 15.1: A random oracle can be simulated perfectly in

PPT.

RSA-OAEP — p.10/28

Using OWTP-OAEP Simon can simulate random oracles
In such a way that he can construct a 1-to-1 relation
between plaintexts and ciphertexts.

If an attacker constructs a valid chosen ciphertext using
an OWTP f, Simon shall be able to “decrypt” ¢ even
though he does not have the trapdoor information for

iInverting f.

Simon can also simulate a decryption oracle (e.g., a naive
user tricked by Malice to provide a decryption service)

The simulated “decryption” capability enables Simon to

offer a proper “cryptanalysis training course” to Malice in
IND-ATK games. (ATK = CPA, CCA or CCA2)

RSA-OAEP — p.11/28

RSA-OAEP

* |n the case of RSA-OAEP, the OWTP is the RSA
encryption function.

* RSA-OAEP encryption scheme involves two hash
function evaluations followed by an application of the
RSA function, and since hash function can be efficiently
evaluated, the scheme is very efficient, almost as
efficient as the textbook RSA.

* consider using RSA modulus of the standard length of
2048 bits (= k), and consider ky = k1 = 160 (so that
2=% and 2% are negligibly small), then the plaintext
message encrypted inside the RSA-OAEP scheme can
have a lenght up to 84% of the lenght of the modulus.

RSA-OAEP — p.12/28

Towards the Security proof

* |f Simon’s “training course” is provided at the precise
quality then Malice, as a successful attacker, must end
up with a non-negligible advantage in short enough time
(PPT) to break the encryption scheme (i.e., in the
IND-ATK case, he ends up relating one of the two
chosen plaintexts to the challenge ciphertext).

* Then Simon who simulates random oracles shall also end
up with a successful inversion of the cryptographic
function at the point of the challenge ciphertext: the
pair (plaintext, challenge ciphertext) can be found in one
of his simulated random oracle lists.

RSA-OAEP — p.13/28

The original ROM-based proof for f-OAEP by Bellare
and Rogaway tried to relate an attack on the f-OAEP
scheme in the IND-CCA2 mode to the problem of
inverting the OWTP f without using the trapdoor
information of f.

However, Shoup has made an ingenious observation and
revealed a flaw in that proof.

Fortunately quickly, the danger of losing a successful
public-key encryption algorithm standard was over!

Fujisaki et al. find a way to rescue OAEP for f being the
RSA function.

RSA-OAEP — p.14/28

A Reduction Based on ROM

Suppose that an attacker A, who is a PPT algorithm,
can have a non-negligible advantage to break an
f-OAEP scheme in the IND-CCA2 mode. Let us
construct an algorithm which will enable Simon
Simulator to make use of the IND-CCA2 attacker A to
invert the OWTP f, also with non-negligible advantage.

This algorithm must be efficient (a PPT one). Thus,
Simon efficiently “reduces” his task of inverting f to A's
capability to attacking the f-OAEP scheme.

The algorithm is therefore called a polynomial-time
reduction.

Inversion of f as the combination of A and the reduction
conducted by Simon then runs in polynomial time.

RSA-OAEP — p.15/28

* |t is the belief that inversion of f cannot be done in
PPT that should refute the existence of the alleged
IND-CCAZ2 attacker A on f-OAEP.

* The reduction is considered to lead to a contradiction.
Therefore, the proof so constructed is called reduction
to contradiction or reductionist proof.

* Let us now study the reduction in detall.

RSA-OAEP — p.16/28

The Reduction

Let Simon be given the description of an OWTP f and a
uniformly random point ¢* in the range of f. Simon

wants to uncover f~!(c*) by using A as an IND-CCA2
attacker.

Simon has taken over all the communication links of A
to and from the external world

Simon starts by sending the description of the f-OAEP
encryption algorithm to A.

Simon shall play with A an IND-CCA2 attack game.
Simon shall impersonate the decryption oracle O as if he
has In his possession a valid decryption box. The
Impersonation is via simulation. We shall see that iIn
ROM, Simon can indeed do so without A detecting
anything wrong.

RSA-OAEP — p.17/28

* Simon shall also provide A with simulated services for
the random oracles G and H used in OAEP. So
whenever A wants to apply G and/or H, it shall actually
make queries to Simon and subsequently gets the
respective query results back from Simon.

* |t is vitally important that the simulations provided by
Simon must be accurate so that A cannot feel anything
wrong in its communications with the outside world.

* Only under a precise simulation A can be educated
properly by Simon and thereby release its attacking
capacity fully.

RSA-OAEP — p.18/28

The IND-CCA2 attacking game

* Recall Protocol 14.4.

* (i) In A’s "find stage”, Simon shall receive from A
indifferent chosen-ciphertexts for decryption. A has
freedom to construct these ciphertexts in any way it
wishes; but if it does want to construct them properly,
via applying the random oracles, then its queries must go
to Simon.

* (ii) Since Simon receives from A chosen ciphertexts for
decryption, Simon shall answer them to A by simulating
the decryption box (oracle O).

e (iii) A shall end its “find stage" by submitting to Simon a
pair of chosen plaintexts mg, m1. Upon their receipt,
Simon shall flip a fair coin b €7 {0,1}, and send to A
the “challenge ciphertext” ¢* as a simulated f-OAEP
encryption of my;. Here, Simon pretends as if ¢* encrypts

mb RSA-OAEP — p.19/28

* (iv) Now A is in its “guess stage”. So it may submit
further adaptive chosen-ciphertext for its “extended
cryptanalysis training course”. Simon shall serve as in
(ii). In case A makes random oracle queries in its proper
construction of the adaptive chosen-ciphertexts, Simon
shall serve as in (i).

* Eventually, A should output its educated guess on the
bit b. This is the end of the attacking game.

* A should not submit the “challenge ciphertext” ¢* for
encryption, because then it would be impossible for
Simon to provide a simulated decryption since ¢* is the
very ciphertext that Simon needs A's help to decrypt.

RSA-OAEP — p.20/28

Simulation of Random Oracles

* |n the simulation, Simon maintains two lists, called his
G-list and his H-list, both are initially set to empty.

* G-oracle Suppose A makes G-query g. Simon shall first
search his G-list trying to find ¢. If g is found in the list,
Simon shall provide G(g) to A. Otherwise, g is fresh;
then Simon picks at uniformly random a string G(g) of
length k& — kg, provides G(g) to A and adds the new pair
(9,G(g)) to G-list.

* |f the query occurs in A’s “guess stage”, then Simon shall
try to invert f at the point ¢*. He should do for each
(9,G(g)) € G-list and each (h, H(h)) € H-list, Simon
builds w = h || (¢ ® H(h)) and checks whether
c* = f(w). If this holds for some so-constructed string,

then f~!(c*) has been found.

RSA-OAEP — p.21/28

* H-oracle Suppose A makes H-query h. Simon shall
first search his H-list trying to find h. If h is found in
the list, Simon shall provide H(h) to A. Otherwise, A is
fresh; then Simon picks at uniformly random a string
H(h) of length kg, provides H(h) to A and adds the
new pair (h, H(h)) to H-list.

* |f the query occurs in A’s “guess stage”, Simon shall do
the same as in the case of G-oracle.

* Notice that if A has managed somehow to gain some
information from c¢*, queries in A’'s “guess stage” should
give that knowledge to Simon and thus help him to
decrypt c*.

RSA-OAEP — p.22/28

Simulation of the Decryption Oracle

* Simon shall simulate the decryption box (oracle ©O). His
simulation steps are: upon receipt of ciphertext ¢ from A
for decryption, Simon looks at each query-answer

(9,G(g)) € G-list and (h, H(h)) € H-list; for each pair
taken from both lists, Simon computes

w=h| (9@ H(h)),

v==G(g) ®h,
and checks whether
c= f(w)?

and

Does v have k; trailing zeros?

RSA-OAEP — p.23/28

e |f both are “YES”, Simon shall return the most
significant n bits of v to A. Otherwise, Simon shall
return REJECT to A.

* A is polynomially bounded, that is the number of
random oracle queries and decryption requests made by
A are also polynomially bounded. Hence, Simon can run

the simulated game in polynomial time.

RSA-OAEP — p.24/28

Accuracy of the Simulation

* Let Simon be given a chosen ciphertext ¢. Simon'’s
simulation for the decryption box is in fact very
accurate. Let,

s|t=rf""c),
r=t® H(s),

m || 0F = s @ G(r)

be the values which are defined by ¢ and for which ¢
should be a valid ciphertext.

* |f the correct s defined by ¢ has not been queried for
random oracle H, then the correct H(s) is missing. In

each G-query, we have probability 270 for r being
correct. The correct value r is also missing with
probability 27%0. Value s @ G(r) can have probability
271 to have k; trailing zeros.

RSA-OAEP — p.25/28

In summary, we can conclude the following result regarding
the simulated decryption of a chosen ciphertext c:

* |f both s and r have been queried for the respective
random oracles, then the simulated decryption can
correctly construct f~!(c) and thereby further decrypt c
In the usual way.

* If either s and/or r has not been queried for the
respective random oracles, then it is correct for the
simulated decryption to return REJECT expect for an
error probability 27 %0 4 2=k,

* Now we have shown that in the “find stage” the
simulated decryption works accurately except for a small
error probability. This is enough to show that f-OAEP is
provably secure against IND-CCA.

RSA-OAEP — p.26/28

Incompleteness

* Consider the following values defined by c*
=)
r*=t"® H(s"),

my || 0% = s* @ G(r*).

* Let us now imagine that s* is queried for random oracle
H. In the “find stage” this must be very unlikely. This is
why it was concluded that we already have a valid proof
for f-OAEP being secure in the IND-CCA mode. It
follows that it is also very unlikely to get my in the “find
stage” and thus attack against IND-CCA is unsuccessful.

* However, it may be possible in the “guess stage’!

RSA-OAEP — p.27/28

Summary

* Bellare and Rogaway’s proof had a flaw
* Can be rescued for f being the RSA function

* In this talk was given a top-level description of the
reduction algorithm used in f-OAEP security proof by
Bellare and Rogaway and shown that f-OAEP is
IND-CCA secure.

RSA-OAEP — p.28/28

	Overview
	Introduction
	
	Optimal Asymmetric Encryption Padding
	
	Central Idea Behind the Transformation
	Random Oracle Model
	How Simon Simulates
	
	
	RSA-OAEP
	Towards the Security proof
	
	A Reduction Based on ROM
	
	The Reduction
	
	The IND-CCA2 attacking game
	
	Simulation of Random Oracles
	
	Simulation of the Decryption Oracle
	
	Accuracy of the Simulation
	
	Incompleteness
	Summary

