RSA and Rabin Signatures
Signcrypotion

Alessandro Tortelli
26-04-06
Overview

• Introduction
• Probabilistic Signature Scheme PSS
• PSS with message recovery
• Signcryption
 – CSC1
 – RSA-TBOS
RSA and Rabin textbook signatures

• Textbook RSA and Rabin signatures are deterministic algorithms:
 – Given
 • (sk, pk) a key pair
 • M message
 Signature is uniquely determined by (sk, pk) and M

• Undesirable property
 – Adaptive chosen message attack permits Malice to obtain two different square roots of a chosen message and thereby factor the modulus (§10.4.5)

• Solution: probabilistic approach
Signatures with Randomized Padding

- Bellare and Rogaway initiate the work of signing with RSA and Rabin in a probabilistic method

Probabilistic Signature Scheme PSS

- PSS is a randomized padding-based fit-for-application digital signature scheme for the RSA and Rabin functions
- Similarities with the RSA-OAEP scheme even if:
 - OAEP encryption procedure makes use of the one-way part of the RSA function
 - PSS signature scheme uses the trapdoor part of the RSA function
PSS key parameters

- Let \((N, e, d, G, H, k_0, k_1) \leftarrow U \text{ Gen}(1^k)\)

 RSA key material: \((N, e)\) public
 \[d = e^{-1} \pmod{\phi(N)}\] private

- \(k = |N| = k_0 + k_1\) with \(2^{-k_0}\) and \(2^{-k_1}\) negligible quantities

- Signing and verifying algorithms make use of two hash functions:

 - \(H : \{0,1\}^* \mapsto \{0,1\}^{k_1}\) compressor
 - \(G : \{0,1\}^{k_1} \mapsto \{0,1\}^{k-k_1-1}\) generator

 G output is split in two sub-strings:
 - G1 has the first \(k_0\) bits
 - G2 has the remaining \(k-k_1-k_0-1\) bits
PSS Padding

\[M \rightarrow r \rightarrow G1(w) \rightarrow H \rightarrow G1 \rightarrow 0 \rightarrow w \rightarrow r^* \rightarrow G2(w) \rightarrow G2 \]
PSS signature generation

\[\text{SignPSS}(M, d, N) = \]

\[r \leftarrow_U \{0,1\}^{k_0} \]

\[w \leftarrow H(M \parallel r) \]

\[r^* \leftarrow G_1(w) \oplus r \]

\[y \leftarrow 0 \parallel w \parallel r^* \parallel G_2(w) \]

\[return(y^d (\text{mod} N)) \]

K-bit string less than N, necessary in order for the modulo exponentiation to be conducted correctly
PSS signature verification

\[
\text{VerifyPSS}(M, U, e, N) = \]
\[
y \leftarrow U^e \pmod{N}
\]
\[
\text{Parse } y \text{ as } b \parallel w \parallel r^* \parallel \gamma
\]
\[
r \leftarrow r^* \oplus G1(w)
\]
\[
\begin{cases}
\text{if } (H(M \parallel r)) = w \land G2(w) = \gamma \land b = 0) \\
\text{return(True)} \\
\text{else return(False)}
\end{cases}
\]
PSS Security

• As with the security proof of RSA-OAEP the security proof of RSA-PSS takes place in the random oracle model. Thus the security proof only provides heuristic evidence for security in the real world.

• Formal evidence is again derived from reduction to contradiction: breaking RSA-PSS will require roughly the same amount of work as it takes to solve the RSA problem \text{HARD PROBLEM}!
 – forgery -> full inversion in one go -> exact security

• RSA-PSS is existentially unforgeable against adaptive chosen-message attacks in the random oracle model under the assumption that the RSA problem is intractable
Signing with Message Recovery
PSS-R

- Main idea: a padding-signature scheme that also permits everybody to recover a signed message

- Original Scheme: Bellare and Rogaway

- Variation: Coron et al.
 - Is secure for signature usage (trapdoor part of RSA function) unforgeability under adaptive chosen-message attack
 - Is secure for encryption usage (one-way part of RSA function) unforgeability under IND-CCA2 mode
PSS-R Padding
Original of Bellare and Rogaway

\[M \parallel r \]

\[H \]

\[w \]

\[r \parallel M \]

\[G \]

\[s \]
PSS-R Padding
Variation of Coron et al.

\[M \parallel r \]

\[H \]

\[G \]

\[w \]

\[s \]
PSS-R key parameters

- Let \((N, e, d, G, H, k_0, k_1) \leftarrow U \text{Gen}(1^k)\)

 RSA key material: \((N, e)\) public

 \[d = e^{-1} \left(\text{mod } \phi(N) \right) \text{private} \]

- \(k = |N| = k_0 + k_1\) with \(2^{-k_0}\) and \(2^{-k_1}\) negligible quantities

- Signing and verifying algorithms make use of two hash functions:

 \[G : \{0,1\}^{k_1} \mapsto \{0,1\}^{k-k_1-1} \]

 \[H : \{0,1\}^{k-k_1-1} \mapsto \{0,1\}^{k_1} \]
PSS-R Signature Generation or Message Encryption

\[PSS - R - Padding(M, x, N) = \]

1. \(r \leftarrow_U \{0,1\}^{k_0} \)
 \(w \leftarrow H(M \ || \ r) \)
 \(s \leftarrow G(w) \oplus (M \ || \ r) \)
 \(y \leftarrow (w \ || \ s) \)

2. \(\text{if}(y \geq N) \text{goto 1.} \)

3. \(\text{return}(y^x \pmod{N}) \)

\(x = d \) for signature generation
\(x = e \) for message encryption
PSS-R signature verification or decryption with Ciphertext validation

\[PSS - R - UnPadding(U, x, N) = \]
\[y \leftarrow U^x \pmod{N} \]
Parse \(y \) as \(w \parallel s \)
Parse \(G(w) \oplus s \) as \(M \parallel r \)

\[\text{if } (H(M \parallel r) = w) \quad \text{return}(\text{True} \parallel M) \]
\[\text{else} \quad \text{return}(\text{False} \parallel \text{Null}) \]
PSS-R Proof of security Encryption

- Proof of security is conceptually the same to that of RSA-OAEP
- A run of the attacker only causes a partial inversion
- Even running Malice twice, the reduction is far from tight (Number Field Sieve method works better if RSA modulus is less than 2048-bit)

\[|w| > \frac{|N|}{2} \quad \rightarrow \quad |M| \leq \frac{|N|}{2} \quad \rightarrow \quad |M| \leq \frac{|N|}{2} - k_0 \]

Rahter low bandwith for message recovery
PSS-R Proof of security Signature

• Proof of security is conceptually the same to that of RSA-PPS
• Successful forgery of a signature can lead to full inversion of RSA function in one go
• It suffices for k_0 and k_1 to have size with 2^{k_0} and 2^{k_1} being negligible

$|M| = k - k_0 - k_1$
Signcryption

• Common practice:
 digital signature and then data encryption
 \[\text{Message expansion rate} \]
 \[\text{Computational time spent} \]

• Signcryption: is a public key primitive to achieve the combined functionality of digital signature and encryption
 – Zheng’s Signcryption Scheme: SCS1 (ElGamal)
 – Malone-Lee and Mao: Two Birds One Stone TBOS (RSA)
SCS1 parameters setup

• Public Parameters
 – p a large prime
 – q a large prime factor of p-1 (q||(p-1))
 – g an element of Zp* of order q
 – H: a oneway hash function
 – Setup a symmetric encryption algorithm E
SCS1 keys setup

- **Alice’s keys**
 - x_a: Alice’s private key, $x_a \in \mathbb{Z}_q^*$
 - y_a: Alice’s public key, $y_a = g^{x_a} \mod p$

- **Bob’s keys:**
 - x_b: Bob’s private key, $x_b \in \mathbb{Z}_q^*$
 - y_b: Bob’s public key, $y_b = g^{x_b} \mod p$
SCS1 Signcryption

To send to Bob M, Alice performs:

1. Pick u randomly from $[1 \ q]$, computes $K = y_b^u \mod p$
 split K into $K1$ and $K2$ of appropriate lengths
2. $ e \leftarrow H(K_2, M) $
3. $ s \leftarrow u(e + x_a)^{-1} \mod q $
4. $ c \leftarrow e_{k1}(M) $
5. Send to Bob the signcrypted text (c, e, s)
SCS1 Unsigncryption

• Recived \((c,e,s)\) from Alice, Bob performs:
 1. Recover \(K\) from \(e,s,g,p,y_a\) and \(x_b\):
 \[
 K \leftarrow (g^{e} y_a)^{sx_b} \mod p
 \]
 2. Split \(K\) into \(K_1\) and \(K_2\)
 3. \(M \leftarrow D_{K_1}(c)\)
 4. Accept \(M\) as a valid message originated from Alice only if:
 \[
 e = H(K_2, M)
 \]
SCS1 Efficiency/1

- **Computation:**
 - **Sygncryption:**
 - One modulo exponentiation
 - One hashing
 - One symmetric encryption
 - **Unsigncryption**
 - Similar amount of computation if \((g^e y_a)^{s_b}\) is rewritten to \(g^{esx_b} y_a^{sx_b}\) and computed using the “Product of Exponentiations Algorithm”. Otherwise it needs two modulo exponentiations.
SCS1 Efficiency/2

- **Communication bandwidth:**
 - Symmetric encryption doesn’t cause data expansion
 - Message signcrypted + $2|q|$ bits
 (same bandwidth for transmitting a signature and signed message in the ElGamal-family signature)
 - Suitable for sending bulk volume of data efficiently (for example using a block cipher with the CBC mode of operation)
SCS1 Security

• SCS1 is essentially a triplet ElGamal signature with a recoverable commitment
 unforgeability of signature under adaptive chosen-message attack
• Zheng has not given a reductionist proof on the IND-CCA2 security
• Perhaps only the intended receiver is able to recover the commitment value K, under adaptive chosen-ciphertext attack
SCS1 Non-repudiation

- i.e. a principal cannot deny the authorship of a message.
- In Zheng’s scheme, verification of a (triplet) signature requires recovery of the commitment K and the recovery needs to use the receiver’s private key DRAWBACK!
- Third party’s arbitration cannot be done!
 - Bob can conduct a Zero Knowledge Proof to convince the arbitrator (tricky)
Two Birds One Stone

- Main idea: “double-wraps”
 - Alice first signs a message by “wrapping” it inside the trapdoor part of her own RSA function
 - Then encrypts the signature by further “wrapping” it inside the one-way part of the RSA function of an intended receiver (Bob)

\[
(N_A, e_A) \quad (N_A, d_A) \quad \text{Alice’s RSA public, private key material}
\]

\[
(N_B, e_B) \quad (N_B, d_B) \quad \text{Bob’s public, private key material}
\]

\[
M^{d_A} \pmod{N_A} \pmod{N_B}
\]
RSA-TBOS observations

• Alice’s RSA modulus may be larger than Bob’s one same moduli size
• In general a message is wrapped after the message has been processed with a randomized padding scheme
• If an “inner wrapping” result exceeds the modulus for an “outer wrapping”?

 sender chops of the most significant bit
 receiver uses trial-and-error test to put it back
RSA-TBOS Key Parameters

- Let k an even positive integer
- Let:

 $(N_A, e_A) (N_A, d_A)$ Alice’s RSA public, private key material
 $(N_B, e_B) (N_B, d_B)$ Bob’s public, private key material

 satisfying $|N_A| = |N_B| = k$

- Signing and verifying algorithms make use of two hash functions:

 $H : \{0,1\}^{n+k_0} \mapsto \{0,1\}^{k_1}$
 $G : \{0,1\}^{k_1} \mapsto \{0,1\}^{n+k_0}$

 Where $k = n + k_0 + k_1$ with 2^{-k_0} and 2^{-k_1} negligible quantities
RSA-TBOS Signcryption

When Alice signcrypts a message $M \in \{0,1\}^n$ for Bob, she performs:

1. $r \leftarrow_U \{0,1\}^k$
2. $w \leftarrow H(M \parallel r)$
3. $s \leftarrow g(w) \oplus (M \parallel r)$
4. if $(s \parallel w > N_A)$ goto (1.)
5. $c' \leftarrow (s \parallel w)^{d_A} \pmod{N_A}$
6. if $(c' > N_B)$, $c' \leftarrow c' - 2^{k-1}$
7. $c \leftarrow c'^{e_B} \pmod{N_B}$
8. Send c to Bob
RSA-TBOS Unsigncryption/1

• When Bob unsigncrypts a cryptogram c from Alice, he performs:

1. $c' \leftarrow c^{d_B} \pmod{N_B}$
2. if $(c' > N_A)$, reject
3. $\mu \leftarrow c'^{e_A} \pmod{N_A}$
4. Parse (μ) as $(s \parallel w)$
5. $M \parallel r \leftarrow G(w) \oplus s$
6. if $(H(M \parallel r) = w)$, return (M)
7. \(c' \leftarrow c' + 2^{k-1} \)
8. \(\text{if } (c' > N_A), \text{reject} \)
9. \(\mu \leftarrow c'^{e_A} \pmod{N_A} \)
10. \(\text{Parse}(\mu)as(s \parallel w) \)
11. \(M \parallel r \leftarrow G(w) \oplus s \)
12. \(\text{if } (w) \neq H(M \parallel r), \text{reject} \)
13. Return \(M \)
RSA-TBOS features

✓ Non-repudiation is very simple
 o The receiver of a signcryption follows the unsigncryption procedure up until stage 2, c' may then be given to a third party who can verify its validity

✓ Message confidentiality under the IND-CCA2

✓ Signature unforgeability under the chosen message attack

❖ Rather low message bandwidth for message recovery due to the application of the RSA-PSS-R padding scheme