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RSA and Rabin
textbook signatures

 Textbook RSA and Rabin signatures are
deterministic algorithms:
— Given
» (sk, pk) a key pair
* M message
mmmm)> Signature is uniquely determined by (sk, pk) and M

* Undesirable property

— Adaptive chosen message attack permits Malice to
obtain two different square roots of a chosen
message and thereby factor the modulus (810.4.5)

« Solution: probabilistic approach



Signhatures with Randomized
Padding

« Bellare and Rogaway Initiate the work of signing with
RSA and Rabin in a probabilistic method

> Probabilistic Signature Scheme PSS

« PSS is arandomized padding-based fit-for-application
digital signature scheme for the RSA and Rabin

functions

o Similarities with the RSA-OAEP scheme even If:
— OAEP encryption procedure makes use of the one-way part of
the RSA fucntion
— PSS signature scheme uses the trapdoor part of the RSA
function




PSS key parameters
. Let (N,e,d,G,H, Kk, k)<, Gen(1")
RSA key material: (N,e) public
d =e*(mod¢(N)) private

« K= N|=k,+Kk with 27 and 27 negligible quantities

e Signing and verifying algorithms make use of two hash
functions:

—> H :{0,1}* H{O,l}kl compressor
—> G :{O,l}kl H{O,l}k_kl_l generator

G output Is split in two sub-strings:
* G1 has the first kO bits
» G2 has the remaining k-k1-kO-1 bits



PSS Padding

» G1l(w)
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PSS signature generation
SIgNPSS(M,d, N) =

kO
r (_U {0’1} K-bit string less then N,
necessary in order for the
W < H (M H r) modulo exponentiation to
. be contucted correctly
r <G (wW)eDr

> y wilr |G, (w)
return(y® (mod N))



PSS signature verification

VerifyPSS(M,U, e, N) =
y <~ U°(mod N)
Parseyas b||w|r’ |y

r<r @®GL(w)

/’

:>< T (HM || 1) =wAG2(W) = ¥ Ab=0)

return(True)

Kelse return(False)



PSS Security

o As with the security proof of RSA-OAEP the security
proof of RSA-PSS takes place in the
. Thus the security proof only provides heuristic
evidence for security in the real world.

 Formal evidence is again derived from
breaking RSA-PSS will require roughly the
same amount of work as it takes to solve the RSA
problem m=——-"> HARD PROBLEM!

— forgery -> full invertion in one go -> exact security

« RSA-PSS is existentially unforgeable against adaptive
chosen-message attacks in the random oracle model
under the assumption that the RSA problem is
Intractable



Signing with Message Recovery
PSS-R

 Main idea: a padding-signature scheme that also permits
to recover a signed message

e Original Scheme: Bellare and Rogaway

e Variation: Coron et al.

— |Is secure for signature usage (trapdoor part of RSA function)
:> unforgeability under adaptive chosen-message attack

— Is secure for encryption usage (one-way part of RSA function)
i> unforgeability under IND-CCA2 mode



PSS-R Padding

Original of Bellare and Rogaway

M| r|| M




PSS-R Padding

Variation of Coron et al.

| r




PSS-R key parameters

. Let (N,e,d,G,H, k, k)<« Gen(1")

RSA key material: (N,e) public
d =e*(mod¢(N)) private

« K= N|=k,+Kk with 27 and 27 negligible quantities

e Signing and veifying algorithms make use of two hash
functions:

—> G: {0} — {0,
—> H:{03“'—{01“



PSS-R Signature Generation or

Message Encryption
PSS — R —Padding(M, x, N) =

1. 1 <, {0,1}*
W<« H(M | r)
S« Gwd(M]|r)
y < (W] s)

2. 1T (y=N)goto 1.
3. return(y*(modN))

x =d for signature generation

X = e for message encryption




PSS-R signature verification or
decpryption with Ciphertext validation

PSS —R-UnPadding(U,x,N) =
y <~ U *(mod N)

Parseyas W||s

Parse G(w)®@s as M||r

if (H(M ||r) =w)=—=> return(True|| M)
else g return(False || Null)



PSS-R Proof of security
Encryption

* Proof of security is conceptually the same to that of
RSA-OAEP

* A run of the attacker only causes a partial inversion

e Even running Malice twice, the reduction is far from
tight (Number Field Sieve method works better if
RSA modulus is less then 2048-bit)

S Iwb 5 = Ml = 1wk

Rahter low bandwith for message recovery




PSS-R Proof of security
Signature

* Proof of security is conceptually the same to that of
RSA-PPS

» Successful forgery of a signature can lead to full
Inversion of RSA function in one go

e |t suffices for kO and k1 to have size with 2
being negligible

M =k -k, —k,

k02k1




Signcryption

« Common practice:
digital signature and then data encryption

- Message expantion rate
mm) Computational time spent

» Signcryption: is a public key primitive to
achieve the combined functionality of digital
signature and encryption
— Zheng'’s Signcryption Scheme: SCS1(ElGamal)

— Malone-Lee and Mao: Two Birds One Stone
TBOS (RSA)



SCS1 parameters setup

* Public Parameters
— p a large prime
— g a large prime factor of p-1 (q|(p-1))
— g an element of Zp* of order q
— H: a oneway hash function
— Setup a symmetric encryption algorithm &



SCS1 keys setup

o Alice’s keys
— Xa: Alice’s private key, X, € qu
A Alice’s public key, Y, = (0 ° mod P

» Bob’s keys: R
— Xb: Bob’s private key, X, € qu
— Yp: Bob's public key, Y, =0 mod P



SCS1 Signcryption

« To sendto Bob M, Alice performs:

1.

ok

Pick u randomly from [1 ], computes
K=y, modp

split K into K1 and K2 of appropriate lengths
e« H(K,,M)

s < u(e+x,) " (modq)

C<« &,(M)

Send to Bob the signcypted text (c,e,s)



SCS1 Unsigncryption

 Recived (c,e,s) from Alice, Bob performs:
1. Recover K from e,s,g,p,ya and xb:
K < (g°y,)™ mod p
2. Split Kinto K1 and K2
3. M« D(c)

4. Accept M as a valid message originated
from Alice only If:

e=H(K,,M)



SCS1 Efficency/1

« Computation:
— Sygncryption:
 One modulo exponentation
e One hashing
e One symmetric encryption
— Unsigncryption
X,

« Similar amount of computation if (9°Y,)”" is
rewrittento g**y. " and computed using the
“Product of Exponentiations Algorithm”. Otherwise
It needs two modulo exponentiations.



SCS1 Efficency/2

e Communication bandwidth:

— Symmetric encryption doesn’t cause data
expantion

— Message signcrypted + 2|q| bits

(same bandwidth for trasmitting a signature
and signed message in the ElGamal-family
signature)

— Suitable for sending bulk volume of data
efficiently (for example using a block cipher
with the CBC mode of operation)



SCS1 Security

« SCS1 is essentialy a triplet EIGamal
signature with a recoverable commitment

—) unforgeabllity of signature under
adaptive chosen-message attack

 Zheng has not given a a reductionist proof
on the IND-CCAZ2 security

 Perhaps only the intened receiver is able
to recover the commitment value K, under
adaptive chosen-ciphertext attack



SCS1 Non-repudiation

* |.e. a principal cannot deny the authorship
of a message.

* In Zheng’s scheme, verification of a (triplet)
signature requires recovery of the
commitment K and the recovery needs to
use the receiver’s private key

e Third party’s arbitration cannot be done!

Bob can conduct a Zero Knowledge Proof
to convince the arbitrator (tricky)




Two Birds One Stone

e Main idea: “double-wraps”

— Alice first signs a message by “wrapping” it
Inside the trapdoor part of her own RSA
function

— Then encrypts the signature by further
“wrapping” it inside the one-way part of the

RSA function of an intended receiver (Bob)
(N,,e,) (N,,d,) Alice’s RSA public, private key material
(NB,eB) (NB,dB) Bob’s public, private key material

> M (modN,)[* (modN, )




RSA-TBOS observations

o Alice’s RSA modulus may be larger than
Bob’s one —— > same moduli size

* In general a message Is wrapped after the
message has been processed with a
randomized padding scheme

e If an “inner wrapping” result exceeds the
modulus for an “outer wrapping”?

| »> sender chops of the most significant bit
| »> receiver uses trial-and-error test to put it back




RSA-TBOS Key Parameters

e Let k an even positive integer

e |et:
(N,,e,) (N,,d,)  Alice’s RSA public, private key material
(Ng.€5) (Ng,ds) Bob's public, private key material
satisfying | N, |=| N |=k

e Signing and veifying algorithms make use
of two hash functions:
—> H:{0,3"° —{0,3"
—> G:{0,1}" — {0, 3"*°

Where K=n+K,+K, with 27 %and 27 neglibible quantities



RSA-TBOS Signcryption

« When Alice signcrypts a message M €{0,1}’
for Bob, she performs:

r <, {0,1}*°

W« H(M | r)

S« g(w)® (M [r)

if (s||w> N, )goto (1.)
¢« (s]w)*(mod N,)
if (¢'>N,),c '« ¢’ -2
. C <« c'®*(mod Nj)

. Send c to Bob

O N OOk wWwhRE



RSA-TBOS Unsigncryption/1

« When Bob unsigncrypts a cryptogram
c from Alice, he performs:

¢« c%(mod N,)

if (¢'> N ,), reject

< c'"“*(mod N ,)

Parse (u)as(s || w)

M|r« G(w)®s

if (H(M || r)=w), return (M)

o 0k WD E



RSA-TBOS Unsigncryption/2

7. C<«c+2

8. If (' > N,),reject

9.  u<«c*(modN,)

10. Parse(u)as(s||w)

11. M|r<GWw)®s

12. if(w)=H(M || r),reject
13. Return M



RSA-TBOS features

v Non-repudiation is very simple
0 The receiver of a signcryption follows the unsigncryption

procedure up until stage 2, ¢’ may then be given to a
third party who can verify its validity

v Message confidentiality under the IND-CCA2

v’ Signhature unforgeability under the chosen
message attack

*»+ Rather low message bandwidth for message
recovery due to the application of the RSA-PSS-R
padding scheme
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