RSA and Rabin Signatures Signcryption

Alessandro Tortelli 26-04-06

Overview

- Introduction
- Probabilistic Signature Scheme PSS
- PSS with message recovery
- Signcryption
 - -CSC1
 - RSA-TBOS

RSA and Rabin textbook signatures

- Textbook RSA and Rabin signatures are deterministic algorithms:
 - Given
 - (sk, pk) a key pair
 - M message

Signature is uniquely determined by (sk, pk) and M

- Undesirable property
 - Adaptive chosen message attack permits Malice to obtain two different square roots of a chosen message and thereby factor the modulus (§10.4.5)
- Solution: probabilistic approach

Signatures with Randomized Padding

• Bellare and Rogaway initiate the work of signing with RSA and Rabin in a probabilistic method

Probabilistic Signature Scheme PSS

- PSS is a randomized padding-based fit-for-application digital signature scheme for the RSA and Rabin functions
- Similarities with the RSA-OAEP scheme even if:
 - OAEP encryption procedure makes use of the one-way part of the RSA fucntion
 - PSS signature scheme uses the trapdoor part of the RSA function

PSS key parameters

• Let $(N, e, d, G, H, k_0, k_1) \leftarrow_U Gen(1^k)$

RSA key material: (N, e) public

 $d = e^{-1} (\operatorname{mod} \phi(N)) private$

- $k = |N| = k_0 + k_1$ with 2^{-k_0} and 2^{-k_1} negligible quantities
- Signing and verifying algorithms make use of two hash functions:

G output is split in two sub-strings:

- G1 has the first k0 bits
- G2 has the remaining k-k1-k0-1 bits

PSS Padding

PSS signature generation SignPSS(M, d, N) = $r \leftarrow_{U} \{0,1\}^{k0}$ K-bit string less then N, necessary in order for the $w \leftarrow H(M \parallel r)$ modulo exponentiation to be contucted correctly $r^* \leftarrow G_1(w) \oplus r$ $(0) w || r^* || G_2(w)$ *y* ← $return(y^d \pmod{N})$

PSS signature verification Verify PSS(M, U, e, N) = $y \leftarrow U^e \pmod{N}$ Parse y as $b \|w\|r^*\|\gamma$ $r \leftarrow r^* \oplus G1(w)$ $\begin{cases} \text{if } (H(M \parallel r)) = w \land G2(w) = \gamma \land b = 0) \\ \text{return}(\text{True}) \end{cases}$ else return(False)

- As with the security proof of RSA-OAEP the security proof of RSA-PSS takes place in the random oracle model. Thus the security proof only provides *heuristic* evidence for security in the real world.

forgery -> full invertion in one go -> exact security

 RSA-PSS is existentially unforgeable against adaptive chosen-message attacks in the random oracle model under the assumption that the RSA problem is intractable

Signing with Message Recovery PSS-R

- Main idea: a padding-signature scheme that also permits everybody to recover a signed message
- Original Scheme: Bellare and Rogaway
- Variation: Coron et al.

Is secure for signature usage (trapdoor part of RSA function)
 unforgeability under adaptive chosen-message attack

Is secure for encryption usage (one-way part of RSA function)
 unforgeability under IND-CCA2 mode

PSS-R Padding Original of Bellare and Rogaway

PSS-R Padding Variation of Coron et al.

PSS-R key parameters

• Let $(N, e, d, G, H, k_0, k_1) \leftarrow_U Gen(1^k)$

RSA key material: (N, e) public

 $d = e^{-1} (\operatorname{mod} \phi(N)) private$

- $k = |N| = k_0 + k_1$ with 2^{-k_0} and 2^{-k_1} negligible quantities
- Signing and veifying algorithms make use of two hash functions:

$$G: \{0,1\}^{k_1} \mapsto \{0,1\}^{k-k_{1-1}} \\ \longmapsto H: \{0,1\}^{k-k_{1-1}} \mapsto \{0,1\}^{k_1}$$

PSS-R Signature Generation or Message Encryption PSS - R - Padding(M, x, N) =**1.** $r \leftarrow_{II} \{0,1\}^{k0}$ $w \leftarrow H(M \parallel r)$ $s \leftarrow G(w) \oplus (M \parallel r)$ $y \leftarrow (w \parallel s)$

- **2.** *if* $(y \ge N)$ *goto* **1.**
- **3.** $return(y^x (mod N))$

x = d for signature generation

x = e for message encryption

PSS-R signature verification or decryption with Ciphertext validation

PSS - R - UnPadding(U, x, N) =

 $y \leftarrow U^x \pmod{N}$

Parse y as $w \parallel s$

Parse $G(w) \oplus s$ as $M \parallel r$

PSS-R Proof of security Encryption

- Proof of security is conceptually the same to that of RSA-OAEP
- A run of the attacker only causes a partial inversion
- Even running Malice twice, the reduction is far from tight (Number Field Sieve method works better if RSA modulus is less then 2048-bit)

$$|w| > \frac{|N|}{2} \quad |M||r| \le \frac{|N|}{2} \quad |M| \le \frac{|N|}{2} = k_0$$

Rahter low bandwith for message recovery

PSS-R Proof of security Signature

- Proof of security is conceptually the same to that of RSA-PPS
- Successful forgery of a signature can lead to full inversion of RSA function in one go
- It suffices for k0 and k1 to have size with 2^{k0} 2^{k1} being negligible

$$\square \longrightarrow |M| = k - k_0 - k_1$$

Signcryption

- Common practice:
 - digital signature and then data encryption
 - Message expantion rate
 - Computational time spent
- Signcryption: is a public key primitive to achieve the combined functionality of digital signature and encryption
 - Zheng's Signcryption Scheme: SCS1(ElGamal)
 - Malone-Lee and Mao: Two Birds One Stone TBOS (RSA)

SCS1 parameters setup

- Public Parameters
 - p a large prime
 - q a large prime factor of p-1 (q|(p-1))
 - g an element of Zp* of order q
 - H: a oneway hash function
 - Setup a symmetric encryption algorithm ${\cal E}$

SCS1 keys setup

- Alice's keys
 - x_a : Alice's private key, $x_a \in Z_q^*$ - y_a : Alice's public key, $y_a = g^{x_a} \mod p$
- Bob's keys:
 - X_b : Bob's private key, $X_b \in Z_q^*$
 - y_b : Bob's public key, $y_b = g^{x_b} \mod p$

SCS1 Signcryption

- To send to Bob *M*, Alice performs:
 - 1. Pick *u* randomly from [1 q], computes $K = y_b^u \mod p$ split *K* into *K1* and *K2* of appropriate lengths

2.
$$e \leftarrow H(K_2, M)$$

- 3. $s \leftarrow u(e + x_a)^{-1} (\operatorname{mod} q)$
- 4. $c \leftarrow \varepsilon_{k1}(M)$
- 5. Send to Bob the signcypted text (c,e,s)

SCS1 Unsigncryption

- Recived (*c*,*e*,*s*) from Alice, Bob performs:
 - 1. Recover *K* from *e*,*s*,*g*,*p*,*ya* and *xb*: $K \leftarrow (g^e y_a)^{sx_b} \mod p$
 - 2. Split *K* into *K1* and *K2*
 - 3. $M \leftarrow D_{K1}(c)$
 - 4. Accept *M* as a valid message originated from Alice only if:

 $e = H(K_2, M)$

SCS1 Efficency/1

- Computation:
 - Sygncryption:
 - One modulo exponentation
 - One hashing
 - One symmetric encryption
 - Unsigncryption
 - Similar amount of computation if $(g^e y_a)^{sx_b}$ is rewritten to $g^{esx_b} y_a^{sx_b}$ and computed using the "Product of Exponentiations Algorithm". Otherwise it needs two modulo exponentiations.

SCS1 Efficency/2

- Communication bandwidth:
 - Symmetric encryption doesn't cause data expantion
 - Message signcrypted + 2|q| bits

(same bandwidth for trasmitting a signature and signed message in the ElGamal-family signature)

 Suitable for sending bulk volume of data efficiently (for example using a block cipher with the CBC mode of operation)

SCS1 Security

- SCS1 is essentially a triplet ElGamal signature with a recoverable commitment
 unforgeability of signature under adaptive chosen-message attack
- Zheng has not given a a reductionist proof on the IND-CCA2 security
- Perhaps only the intened receiver is able to recover the commitment value K, under adaptive chosen-ciphertext attack

SCS1 Non-repudiation

- i.e. a principal cannot deny the authorship of a message.
- In Zheng's scheme, verification of a (triplet) signature requires recovery of the commitment K and the recovery needs to use the receiver's private key DRAWBACK!
- Third party's arbitration cannot be done!

Bob can conduct a Zero Knowledge Proof to convince the arbitrator (tricky)

Two Birds One Stone

- Main idea: "double-wraps"
 - Alice first signs a message by "wrapping" it inside the trapdoor part of her own RSA function
 - Then encrypts the signature by further "wrapping" it inside the one-way part of the RSA function of an intended receiver (Bob) $(N_A, e_A) (N_A, d_A)$ Alice's RSA public, private key material $(N_B, e_B) (N_B, d_B)$ Bob's public, private key material

RSA-TBOS observations

- Alice's RSA modulus may be larger than Bob's one same moduli size
- In general a message is wrapped after the message has been processed with a randomized padding scheme
- If an "inner wrapping" result exceeds the modulus for an "outer wrapping"?

sender chops of the most significant bit
receiver uses trial-and-error test to put it back

RSA-TBOS Key Parameters

- Let k an even positive integer
- Let:

 $(N_A, e_A) (N_A, d_A)$ Alice's RSA public, private key material $(N_B, e_B) (N_B, d_B)$ Bob's public, private key material

satisfying $|N_A| = |N_B| = k$

• Signing and veifying algorithms make use of two hash functions: $\longrightarrow H \cdot \{0,1\}^{n+k0} \mapsto \{0,1\}^{k1}$

$$G: \{0,1\}^{k_1} \mapsto \{0,1\}^{n+k_0}$$

Where $k = n + k_0 + k_1$ with 2^{-k_0} and 2^{-k_1} neglibible quantities

RSA-TBOS Signcryption

 When Alice signcrypts a message M ∈ {0,1}ⁿ for Bob, she performs:

1.
$$r \leftarrow_{U} \{0,1\}^{k0}$$

2. $w \leftarrow H(M \parallel r)$
3. $s \leftarrow g(w) \oplus (M \parallel r)$
4. $if(s \parallel w > N_A)goto (1.)$
5. $c' \leftarrow (s \parallel w)^{d_A} \pmod{N_A}$
6. $if(c' > N_B), c' \leftarrow c' - 2^{k-1}$
7. $c \leftarrow c'^{e_B} \pmod{N_B}$
8. Send c to Bob

RSA-TBOS Unsigncryption/1

- When Bob unsigncrypts a cryptogram *c* from Alice, he performs:
 - 1. $c' \leftarrow c^{d_B} \pmod{N_B}$
 - 2. *if* $(c' > N_A)$, *reject*
 - **3.** $\mu \leftarrow c'^{e_A} \pmod{N_A}$
 - **4.** *Parse* $(\mu)as(s || w)$
 - **5.** $M \parallel r \leftarrow G(w) \oplus s$
 - 6. *if* (H(M || r) = w), *return* (M)

RSA-TBOS Unsigncryption/2

- 7. $c' \leftarrow c' + 2^{k-1}$
- 8. if $(c' > N_A)$, reject
- 9. $\mu \leftarrow c'^{e_A} \pmod{N_A}$
- 10. $Parse(\mu)as(s \parallel w)$
- **11.** $M \parallel r \leftarrow G(w) \oplus s$
- 12. $if(w) \neq H(M \parallel r), reject$
- 13. Return M

RSA-TBOS features

✓ Non-repudiation is very simple

- o The receiver of a signcryption follows the unsigncryption procedure up until stage 2, c' may then be given to a third party who can verify its validity
- ✓ Message confidentiality under the IND-CCA2
- ✓ Signature unforgeability under the chosen message attack
- Rather low message bandwidth for message recovery due to the application of the RSA-PSS-R padding scheme