Strong and provable secure ElGamal type signatures
Chapter 16.3

Santeri.Saarinen@hut.fi
Overview

- El Gamal cryptosystem and El Gamal type signatures
- Terms used
- Forking reduction
- Discussion on the results
- Heavy-Row reduction
- Conclusion
El Gamal cryptosystem

- Public key system based on discrete logarithm problem
- Prime p and primitive element α
- Private key is a and $\beta = \alpha^a \mod p$
- Random number k, message x
- $E: y_1 = \alpha^k \mod p, y_2 = x^*\beta^k \mod p$
- $D: y_2 * (y_1^a)^{-1} \mod p$
El Gamal example - encryption

• Suppose: \(p = 13, \alpha = 2, a = 3, \beta = 2^3 \mod 13 = 8, \)
 message \(x = 11, \) random \(k = 5 \)

• Public key: \(\{p, \alpha, \beta\} = \{13, 2, 8\} \)

• Encryption: \(y_1 = 2^5 \mod 13 = 6 \)
 \(y_2 = 11 \times 8^5 \mod 13 = 10 \)

• Ciphertext: (6, 10)
El Gamal example - decryption

• Public key: \(\{ p, \alpha, \beta \} = \{ 13, 2, 8 \} \)
• Private key: \(a = 3 \)
• Ciphertext: \(y = \{ 6, 10 \} \)
• \(x = 10 \times (6^3)^{-1} \mod 13 = 11 \)
El Gamal signature scheme

- \(\text{sig}(m, k) = (y_1, y_2) \)
 \[
y_1 = \alpha^k \mod p
 \]
 \[
y_2 = (m - a \cdot y_1) \cdot (k^{-1}) \mod (p - 1)
 \]
- \(\text{ver}(m, y_1, y_2) \Leftrightarrow
 \]
 \[
y_1^{y_2} \cdot \beta^{y_1} = \alpha^m \mod p
 \]
El Gamal signature example

• Public key: \{p, \alpha, \beta\} = \{13, 2, 8\}
• Private key: a = 3
• m = 11, k = 5
• \text{sig}(11, 5):
 \[y_1 = \alpha^k \mod p = 6 \]
 \[y_2 = (m - a \cdot y_1) \cdot (k^{-1}) \mod (p - 1) = 1 \]
El Gamal Signature example cont.

- verify:
 \[y_1^{y_2} \cdot \beta^{y_1} = \alpha^m \mod p \]
 \[6^1 \cdot 8^6 = 2^{11} \mod 13 \]
 \[7 = 7 \iff \text{true} \]

- Digital Signature Algorithm (DSA) and Schnorr are variants of El Gamal.
Triplet Signature Scheme

• Signature of message M is triplet (r,e,s)
• r is called commitment, committing ephemeral integer l. Constructed for example: $r = g^l \mod p$
• $e = H(M, r)$, where $H()$ is a hash function
• s is called signature, a linear function of $(r, l, M, H(),$ signing key)
Secure Signature Scheme

• Signature scheme is denoted by \((Gen, Sign, Verify)\)
• \(Gen\) generates private and public key
• \(Sign\) signs message and \(Verify\) verifies
• Signature scheme is \((t(k), Adv(k))\), if there exists no forger able to forge a signature for all sufficiently large \(k\).
Reduction

• Transformation from $t(k), Adv(k)$ to $t'(k), Adv'(k)$, which is corresponding solution to a hard problem (e.g. discrete logarithm)
• Main aim to make solution to a hard problem ”too easy”.
• Similarity between between the two efforts depends on the efficicency of the reduction
Setup

Signature scheme and public key

Signing training

Educated forgery

Simulation random oracle

Solution to a hard problem
Non-adaptive attack

• A triplet version of El Gamal is used
• No signing training needed
• Simon operates as simulated random oracle for H() queries
First lot of runs

- $1/\text{Adv}(k)$ runs needed by Malice
- Simon maintains list of $e = H(M, r)$ delivered to Malice
- When Malice outputs a forgery, he has queried the corresponding e
Second lot of runs

- Malice re-runs $1/Adv(k)$ times
- Simon resets his RO-answers
- Because on birthday-paradox, two signature pairs $(M, (r,e,s))$ and $(M’, (r’,e’,s’))$ satisfy $(M,r) = (M’,r’)$ after number of tries
Extraction of discrete logarithm

\[y^r s = g^e (\text{mod } p) , \; y^r s' = g^e' (\text{mod } p) \]

\[\Leftrightarrow xr + ls = e \pmod{q} , \; xr + ls' = e' \pmod{q} \]

\[\Leftrightarrow l = (e - e')/(s - s') \pmod{q} \]

\[x = (e - ls)/r \pmod{q} \]

Simon does not care of Malice’s method, but is able to extract discrete logarithm.
Reduction results

• Simon’s advantage \(\text{Adv}'(k) = \frac{1}{(q_h^{0.5})} \)
• Simon’s time cost \(t' = \frac{2(t+q_h)}{\text{Adv}(k)} \)
 \(t \) is the time Malice needs for a forgery
• This works only if Malice does not care he is fooled
Adaptive chosen-message attack

• Simon simulates also signing of the messages, but does not posses the signing key. Though signature can be verified!

• For signing query, Simon returns:
 \[r = g^u y^v \pmod{p} \]
 \[s = -rv^{-1} \pmod{p - 1} \]
 \[e = -ruv^{-1} \pmod{p - 1} \]

, where \(u \) and \(v \) are random integers
ACM-attack results

t'(k) = 2 * (t(k) + q_H * \tau) + O\Omega(q_s * k^3) / Adv(k)
Adv'(k) = q_H^{-0.5}

- q_s is number of signing queries
- q_H is number of hash-queries
- \tau is time consumed in answering a query
Discussion

• The proof suggests that vulnerable parts of this kind of signature are discrete logarithm and the hash-function

• Reduction should run $q_H^{0.5}$ times, which makes the total time $O(q_H^{3/2} / \text{Adv})$

• Mao suggests 2^{50} hash queries
 => $O(2^{75} / \text{Adv})$
Heavy-Row technique

• Created for zero-knowledge identification, but applies to El Gamal also
• Matrix-based approach featuring Malice and Simon
• Two forged signatures lead to contradiction as in forking technique.
Conclusion

• It is possible to reduct from forgering a triplet El Gamal signature to solving discrete logarithm in constant time.
• Using Simon the Simulator offers a good tool to build the reduction.