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Introduction

M. Bellare, P. Rogaway “Entity Authentication and Key
Distribution,” CRYPTO ’93

Describes the first provably secure protocol for entity

authentication and key distribution

Entity authentication is the process by which an agent in a
distributed system gains confidence in the identity of a

communcation partner

Key distribution gives the partners a session key for message

confidentiality, integrity and other needs.



Previous Work

Needham-Schroeder authentication protocol
Propose, attack, fix, attack, fix, ...
Encryption-decryption paradigm

Confidentiality vs. data integrity



Traditional Needham-Schroeder Symmetric-key
Authentication

e Traditional Needham-Schroeder relies on encryption

Alice — Trent : Alice, Bob, N4

Trent — Alice : {K, Na,Bob, {K, Alice} k... } i . r
Alice — Bob : Trent, { K, Alice} k..

Bob — Alice : {Np}xk

Alice — Bob : {Np — 1}k

e Without integrity checking the data can be modified although
encrypted



Refined Needham-Schroeder Symmetric-key
Authentication

e The refined Needham-Schroeder authentication minimizes use of

encryption using message authentication

Alice — Trent : Alice, Bob, N4

Trent — Alice : {K}x,,,Na,Alice, Bob]k ,,
{K}kyp, T, Alice, Bob| k..

Alice — Bob : :{K}KBT T, Alice, BOb]KBT
Bob — Alice : [Ng]k
Alice — Bob : [Np — 1]k

e Confidentiality service is provided at the minimum level



Bellare-Rogaway Model

All communication between the parties is under the control of the

adversary who can read, create, modify, delay, replay messages

The adversary can initiate new authentication sessions at any
time

Each party will be modeled by an oracle which the adversary can
run

The oracles never directly interact with one another

The protocol is secure if the only way that an adversary can get
a party to accept is by faithfully relaying messages (benign

adversary)



Authenticating participants

e Players are modeled by a function II(1%,1, §, a, k, 7):

1k
1
J
a
K

r

Security parameter - kK € N
Identity of the initiator - 2 € [
Identity of the responder - 7 € 1
Secret information - a € {0, 1}*
Conversation so far - k € {0,1}*

Random input of the sender - r € {0, 1}

e [ is a set of identities which defines the players who can

participate in the protocol

e The adversary is not a player (¢ I)

e The function II runs in polynomial time



Player Function Response

e The execution of II(1%,4, ,a, x,r) yields a response (m, d, a):
m  Next output message - m € {0,1}* U {x}
0  The decision of the oracle - 6 € {A, R, *}

o«  Private output to the player - o € {0,1}* U {*}



Key Generator

e The protocol also includes a key generator G(1%,i,rg) for
generating keys:
1*¥  Security parameter - k € N
i  Identity of the protocol participant - ¢« € I U{FE}
rg  infinite string - rg € {0,1}°°

e Generates keys for all the protocol participants

e In this protocol players share a common secret key
g(lka ia TG) — g(1k7 j) TG)



The Protocol

Running the protocol in the presence of an adversary E, using

security parameter k, means performing the following experiments:

Choose a random string rg € {0,1}*° and set a; = Q(lk,i,r(;),
for i € I, and set ag = (1k,E,Tg)

Choose a random string rp € {0,1}*° and for each i,j € I, s € N,

a random string rf ; € {0,1}°°

Let k7 ; = Aforalli,jeland s €N

Run adversary E on input (1%, ag,rg). E queries (i, j, s, 2) and
J

S

§ i), answers

S..x,r

oracle IIf . computes (m, 9, a) = I1(1%, 1, §, ai, i j

with (m,d) and k; ; gets replaced by &; ;.x



Conversations

The Adversary’s i-th query to an oracle is said to occur at time
T =T1; € R. For v < j we demand that 7; < 7;

The conversation « of oracle II7 ; is a sequence of messages
ordered by time 71 < 75 < --- < 7 for some R € N

Oracle 1I7 ; has conversation
K = (7-17 &1761)7 (7-27 &2762)7 (7_37 043763)7 SRR (Tm7 Oé’l’fmﬂm)

If a; = A, II7 ; is an initiator oracle

: : s
If a; is any other string, II7 ; is a responeder oracle



Matching Conversations

e Consider two oracles II7 ; and H;,L- engage in a conversation

o If
lif’j = (7’0, )\,ml), (Tg,mll,mg), (7’4,777,/2,77?,3), c o vy (TQt—meé_l,mt)
and
K“;',z' — (Tlamlv mll)v (7_37 m27m,2)7 (7_57m37m§,)7 sy (7_275—17 my, )‘)

parties 7, 7 have a matching conversation



Mutual Authentication

e T'wo parties 7, 7 accept when they have a matching conversation

e No-Matching” (k) is the event that there exists 4, j, s such that

117 ; accepted yet there is no H;Z with matching conversation
e II is a secure mutual authentication protocol if for any
polynomial time adversary E

1. If oracles 117 ; and H;Z have matching conversations, both

oracles accept

2. The probability of No—MatchingE(k) is negligible



MAP1

e Let f, be a pseudo random function {0, 1}§L(k) — {0, 1}l(k)
specified by key a and L(k) = 4k and I(k) = k

e For any string « € {0,1}=L() define [z], = (, fo(x)) to denote
the authentication of message x

A.Ra

Y

[B.A.Rs.R5la

Alice” Bob?

A

[A.RB]a

Y



MAP1 is Secure

Suppose f is a pseudorandom function. MAP1 based on f is a

secure mutual authentication protocol

Running the adversary F with MAP1 using a PRF f, is the real

experiment

Running the adversary F with MAP1 using a truly random

function ¢ is the random experiment

The probability that the adversary E is successful in the random
MAP1 experiment is at most Tg(k)? - 27% where Tg(k) denotes

the polynomial bound on the number of oracle calls made by E



The Random MAP1 Experiment (part 1)

Claim: The probability that the initiator oracle II% g accepts
without a matching conversation is at most Tg(k) - 27*

Proof: Suppose at time 79 oracle II%) p send the flow R4. Let

R(m9) = {R/y € {0,1}* : 37, such that [T 4 was given R/, at time
T<T19.}. If I p accepts, then at time 75 > 7 is must have receive
|B.A.R4.Rp|, for some Rp. The probability that £ can compute it
is at most 27%. The output came from oracle HtB, 4 which received
R 4. The probability of this happening before 79 (R4 € R(7p)) is at
most [Tr(k) — 1] - 27%. If it happened after 7y then we have a
matching conversation. The probability that 1I% p accepts without a

matching conversation is at most T (k) - 27%.



The Random MAP1 Experiment (part 2)

Claim: The probability that the responder oracle Hfg’ 4 accepts
without a matching conversation is at most Tg(k) - 27*

Proof: Suppose at time 7, oracle II; 4 received the flow R4 and
responded with [B.A.R4, Rp],. To accept, Hfg’ 4 Inust receive
|A.Rg], at time 73 > 7. The probability that E can compute it is at
most 27%. The initiator must be a II% o oracle. The interaction with
E has the form (79, A, R4), (12, |[C.A.R'y.R5],4, |A.R;],) for some

7o > Tp. Except for probability 27% there is a 1I¢, 4 oracle which
output |[C.A.R/,.R’%],.



The Random MAP1 Experiment (part 2 cont.)

Proof (cont.): If (u,C) # (t, B), the probability that R’; = Rp is at
most [T (k) — 2] - 27% and thus the probability that [A.R%], leads
[T 4 to accept is at most [Tg (k) — 2] .27, Suppose (u,C) = (t, B).
It follows that 19 < 73 < 172 <73, Ry = R4 and Rz = Rp and we
have a matching conversation. The probability that Hfg’ 4 accepts
without a matching conversation is at most Tr (k) - 27F.

Conclusion: The probability that there exists an oracle which accepts
without a matching conversation is at most Tg(k) times the bound
obtained in the claims, thus Tz (k)2 - 2%



The Real MAP1 Experiment

Claim: Real MAP1 is secure

Proof: Suppose adversary E has a non-negligible probability to
succeed in the real MAP1 experiment. We will construct a
polynomial time test 1" which distinguishes random functions from
pseudo-random functions. 7T receives ¢ : {0, 1}=4(F) — {0, 1}* which
is chosen by fliping a coin C. If C' =1 let g be a random function,
else pick a at random and let g = f,. 1"’s job is to predict C' with

S

some advantage. T' runs F for MAP1Y. T' simulates all oracles II7 .

If F is successful, T predicts C' = 0 (g is pseudorandom), else T
predicts C' =1 (g is random). T”s advantage is Adv(T) = 1 Adv(E).
Thus an efficient attack on real MAP1 leads to a distiguihser of

random and pseudorandom functions.



Authenticated Key Exchange

The intent of an AKE will be to authenticate entities and to
distribute a session key. When a player accepts, his private
output will be interpreted as the session key.

We strengthen our adversary E so that he can query a session

S S
key a7 ; of oracle II7

Initially oracles are unopened, until the adversary asks for the

session key.

An oracle 1II7 ; is fresh if it has accepted, is unopened and there is

no opened oracle H;Z which engaged in a matching conversation
with II7 ;



Authenticated Key Exchange Security

e At the end of a secure AKE the adversary should be unable to

distinguish a fresh session key from a random element over
{0,1}*

e Protocol II is a secure AKE if Il is a secure mutual

authentication protocol and in addition it is true that:

1. In the precense of a benign adversary, oracles 117 . and H;Z
S t

= -

accept with a; i

2. In the precense of any polynomial time adversary E the
advantage of distinguishing a given session key from a random
output from {0, 1}* should be negligible.

e We can modify MAP1 to a secure AKE:



AKEP1

A.Rag

Y

[B.A.RA.RB.{Oé}aQ]al

Alice®t %2 Bob®+%2

A

[A.RB]a,

Y



Conclusion

Bellare and Rogaway provide a framework for proving

authentication protocols

Matching conversations is a useful paradigm for proving protocol

security

MAP1 is a secure mutual authentication protocol and AKEP1 is

a secure key exchange protocol

Proofs rely on the existance of PRFs that are indistinguishable

from truly random functions



