Bellare-Rogaway protocol verification model

T-79.5502 Advanced Course in Cryptology

Samuli Larvala

Overview

- Introduction
- The model
- Two-party mutual authentication
- Security analysis
- Two-party authenticated key exchange
- Conclusion

Introduction

- M. Bellare, P. Rogaway "Entity Authentication and Key Distribution," CRYPTO '93
- Describes the first provably secure protocol for entity authentication and key distribution
- Entity authentication is the process by which an agent in a distributed system gains confidence in the identity of a communcation partner
- Key distribution gives the partners a session key for message confidentiality, integrity and other needs.

Previous Work

- Needham-Schroeder authentication protocol
- Propose, attack, fix, attack, fix, ...
- Encryption-decryption paradigm
- Confidentiality vs. data integrity

Traditional Needham-Schroeder Symmetric-key Authentication

• Traditional Needham-Schroeder relies on encryption

Alice \rightarrow Trent : Alice, Bob, N_A Trent \rightarrow Alice : $\{K, N_A, \text{Bob}, \{K, \text{Alice}\}_{K_{BT}}\}_{K_{AT}}$ Alice \rightarrow Bob : Trent, $\{K, \text{Alice}\}_{K_{BT}}$ Bob \rightarrow Alice : $\{N_B\}_K$ Alice \rightarrow Bob : $\{N_B - 1\}_K$

• Without integrity checking the data can be modified although encrypted

Refined Needham-Schroeder Symmetric-key Authentication

• The refined Needham-Schroeder authentication minimizes use of encryption using message authentication

Alice \rightarrow Trent : Alice, Bob, N_A Trent \rightarrow Alice : $[\{K\}_{K_{AT}}, N_A, \text{Alice, Bob}]_{K_{AT}}$ $[\{K\}_{K_{BT}}, T, \text{Alice, Bob}]_{K_{BT}}$ Alice \rightarrow Bob : $[\{K\}_{K_{BT}}, T, \text{Alice, Bob}]_{K_{BT}}$ Bob \rightarrow Alice : $[N_B]_K$ Alice \rightarrow Bob : $[N_B - 1]_K$

• Confidentiality service is provided at the minimum level

Bellare-Rogaway Model

- All communication between the parties is under the control of the adversary who can read, create, modify, delay, replay messages
- The adversary can initiate new authentication sessions at any time
- Each party will be modeled by an oracle which the adversary can run
- The oracles never directly interact with one another
- The protocol is secure if the only way that an adversary can get a party to accept is by faithfully relaying messages (benign adversary)

Authenticating participants

- Players are modeled by a function $\Pi(1^k, i, j, a, \kappa, r)$:
 - 1^k Security parameter $k \in \mathbb{N}$
 - i Identity of the initiator $i \in I$
 - j Identity of the responder $j \in I$
 - a Secret information $a \in \{0, 1\}^*$
 - κ Conversation so far $\kappa \in \{0, 1\}^*$
 - r Random input of the sender $r \in \{0, 1\}^{\infty}$
- *I* is a set of identities which defines the players who can participate in the protocol
- The adversary is not a player $(\notin I)$
- The function Π runs in polynomial time

Player Function Response

- The execution of $\Pi(1^k, i, j, a, \kappa, r)$ yields a response (m, δ, α) :
 - m Next output message $m \in \{0, 1\}^* \cup \{*\}$
 - δ The decision of the oracle $\delta \in \{A, R, *\}$
 - α Private output to the player $\alpha \in \{0, 1\}^* \cup \{*\}$

Key Generator

- The protocol also includes a key generator $\mathcal{G}(1^k, i, r_G)$ for generating keys:
 - 1^k Security parameter $k \in \mathbb{N}$
 - *i* Identity of the protocol participant $i \in I \cup \{E\}$
 - r_G infinite string $r_G \in \{0, 1\}^\infty$
- Generates keys for all the protocol participants
- In this protocol players share a common secret key $\mathcal{G}(1^k,i,r_G) = \mathcal{G}(1^k,j,r_G)$

The Protocol

Running the protocol in the presence of an adversary E, using security parameter k, means performing the following experiments:

- Choose a random string $r_G \in \{0,1\}^\infty$ and set $a_i = \mathcal{G}(1^k, i, r_G)$, for $i \in I$, and set $a_E = (1^k, E, r_G)$
- Choose a random string $r_E \in \{0,1\}^{\infty}$ and for each $i, j \in I, s \in \mathbb{N}$, a random string $r_{i,j}^s \in \{0,1\}^{\infty}$

• Let
$$\kappa_{i,j}^s = \lambda$$
 for all $i, j \in I$ and $s \in \mathbb{N}$

• Run adversary E on input $(1^k, a_E, r_E)$. E queries (i, j, s, x) and oracle $\Pi_{i,j}^s$ computes $(m, \delta, \alpha) = \Pi(1^k, i, j, a_i, \kappa_{i,j}^s. x, r_{i,j}^s)$, answers with (m, δ) and $\kappa_{i,j}^s$ gets replaced by $\kappa_{i,j}^s. x$

Conversations

- The Adversary's i-th query to an oracle is said to occur at time $\tau = \tau_i \in \mathbb{R}$. For i < j we demand that $\tau_i < \tau_j$
- The conversation κ of oracle $\Pi_{i,j}^s$ is a sequence of messages ordered by time $\tau_1 < \tau_2 < \cdots < \tau_R$ for some $R \in \mathbb{N}$
- Oracle $\Pi_{i,j}^s$ has conversation $K = (\tau_1, \alpha_1, \beta_1), (\tau_2, \alpha_2, \beta_2), (\tau_3, \alpha_3, \beta_3), \dots, (\tau_m, \alpha_m, \beta_m)$
- If $\alpha_1 = \lambda$, $\Pi_{i,j}^s$ is an initiator oracle
- If α_1 is any other string, $\prod_{i,j}^s$ is a responder oracle

Matching Conversations

- Consider two oracles $\Pi_{i,j}^s$ and $\Pi_{j,i}^t$ engage in a conversation
- If $\kappa_{i,j}^s = (\tau_0, \lambda, m_1), (\tau_2, m'_1, m_2), (\tau_4, m'_2, m_3), \dots, (\tau_{2t-2}, m'_{t-1}, m_t)$ and

 $\kappa_{j,i}^t = (\tau_1, m_1, m_1'), (\tau_3, m_2, m_2'), (\tau_5, m_3, m_3'), \dots, (\tau_{2t-1}, m_t, \lambda)$ parties *i*, *j* have a matching conversation

Mutual Authentication

- Two parties i, j accept when they have a matching conversation
- No-Matching^E(k) is the event that there exists i, j, s such that $\Pi_{i,j}^s$ accepted yet there is no $\Pi_{j,i}^t$ with matching conversation
- Π is a secure mutual authentication protocol if for any polynomial time adversary E
 - 1. If oracles $\Pi_{i,j}^s$ and $\Pi_{j,i}^t$ have matching conversations, both oracles accept
 - 2. The probability of No-Matching^E(k) is negligible

MAP1

- Let f_a be a pseudo random function $\{0,1\}^{\leq L(k)} \to \{0,1\}^{l(k)}$ specified by key a and L(k) = 4k and l(k) = k
- For any string $x \in \{0,1\}^{\leq L(k)}$ define $[x]_a = (x, f_a(x))$ to denote the authentication of message x

MAP1 is Secure

- Suppose f is a pseudorandom function. MAP1 based on f is a secure mutual authentication protocol
- Running the adversary E with MAP1 using a PRF f_a is the real experiment
- Running the adversary E with MAP1 using a truly random function g is the random experiment
- The probability that the adversary E is successful in the random MAP1 experiment is at most $T_E(k)^2 \cdot 2^{-k}$ where $T_E(k)$ denotes the polynomial bound on the number of oracle calls made by E

The Random MAP1 Experiment (part 1)

Claim: The probability that the initiator oracle $\Pi_{A,B}^s$ accepts without a matching conversation is at most $T_E(k) \cdot 2^{-k}$ **Proof:** Suppose at time τ_0 oracle $\Pi_{A,B}^s$ send the flow R_A . Let $\mathcal{R}(\tau_0) = \{R'_A \in \{0,1\}^k : \exists \tau, t \text{ such that } \Pi^t_{B,A} \text{ was given } R'_A \text{ at time } \}$ $\tau < \tau_0$. If $\Pi_{A,B}^s$ accepts, then at time $\tau_2 > \tau_0$ is must have receive $[B.A.R_A.R_B]_q$ for some R_B . The probability that E can compute it is at most 2^{-k} . The output came from oracle $\Pi_{B,A}^t$ which received R_A . The probability of this happening before τ_0 ($R_A \in \mathcal{R}(\tau_0)$) is at most $[T_E(k) - 1] \cdot 2^{-k}$. If it happened after τ_0 then we have a matching conversation. The probability that $\Pi_{A,B}^s$ accepts without a matching conversation is at most $T_E(k) \cdot 2^{-k}$.

The Random MAP1 Experiment (part 2)

Claim: The probability that the responder oracle $\Pi_{B,A}^t$ accepts without a matching conversation is at most $T_E(k) \cdot 2^{-k}$ **Proof:** Suppose at time τ_1 oracle $\Pi_{B,A}^t$ received the flow R_A and responded with $[B.A.R_A, R_B]_g$. To accept, $\Pi_{B,A}^t$ must receive $[A.R_B]_g$ at time $\tau_3 > \tau_1$. The probability that E can compute it is at most 2^{-k} . The initiator must be a $\Pi_{A,C}^s$ oracle. The interaction with E has the form $(\tau_0, \lambda, R'_A), (\tau_2, [C.A.R'_A.R'_B]_g, [A.R'_B]_g)$ for some $\tau_2 > \tau_0$. Except for probability 2^{-k} there is a $\Pi_{C,A}^u$ oracle which output $[C.A.R'_A.R'_B]_g$.

The Random MAP1 Experiment (part 2 cont.)

Proof (cont.): If $(u, C) \neq (t, B)$, the probability that $R'_B = R_B$ is at most $[T_E(k) - 2] \cdot 2^{-k}$ and thus the probability that $[A.R'_B]_g$ leads $\Pi^t_{B,A}$ to accept is at most $[T_E(k) - 2] \cdot 2^{-k}$. Suppose (u, C) = (t, B). It follows that $\tau_0 < \tau_1 < \tau_2 < \tau_3$, $R'_A = R_A$ and $R'_B = R_B$ and we have a matching conversation. The probability that $\Pi^t_{B,A}$ accepts without a matching conversation is at most $T_E(k) \cdot 2^{-k}$. Conclusion: The probability that there exists an oracle which accepts without a matching conversation is at most $T_E(k) \cdot 2^{-k}$.

The Real MAP1 Experiment

Claim: Real MAP1 is secure

Proof: Suppose adversary E has a non-negligible probability to succeed in the real MAP1 experiment. We will construct a polynomial time test T which distinguishes random functions from pseudo-random functions. T receives $g: \{0,1\}^{\leq L(k)} \to \{0,1\}^k$ which is chosen by fliping a coin C. If C = 1 let g be a random function, else pick a at random and let $g = f_a$. T's job is to predict C with some advantage. T runs E for MAP1^g. T simulates all oracles $\Pi_{i,j}^s$. If E is successful, T predicts C = 0 (g is pseudorandom), else T predicts C = 1 (g is random). T's advantage is $Adv(T) = \frac{1}{2}Adv(E)$. Thus an efficient attack on real MAP1 leads to a distiguisher of random and pseudorandom functions.

Authenticated Key Exchange

- The intent of an AKE will be to authenticate entities and to distribute a session key. When a player accepts, his private output will be interpreted as the session key.
- We strengthen our adversary E so that he can query a session key $\alpha_{i,j}^s$ of oracle $\prod_{i,j}^s$
- Initially oracles are unopened, until the adversary asks for the session key.
- An oracle Π^s_{i,j} is fresh if it has accepted, is unopened and there is no opened oracle Π^t_{j,i} which engaged in a matching conversation with Π^s_{i,j}

Authenticated Key Exchange Security

- At the end of a secure AKE the adversary should be unable to distinguish a fresh session key from a random element over $\{0,1\}^k$
- Protocol Π is a secure AKE if Π is a secure mutual authentication protocol and in addition it is true that:
 - 1. In the precense of a benign adversary, oracles $\Pi_{i,j}^s$ and $\Pi_{j,i}^t$ accept with $\alpha_{i,j}^s = \alpha_{j,i}^t$
 - 2. In the precense of any polynomial time adversary E the advantage of distinguishing a given session key from a random output from $\{0, 1\}^k$ should be negligible.
- We can modify MAP1 to a secure AKE:

AKEP1

Conclusion

- Bellare and Rogaway provide a framework for proving authentication protocols
- Matching conversations is a useful paradigm for proving protocol security
- MAP1 is a secure mutual authentication protocol and AKEP1 is a secure key exchange protocol
- Proofs rely on the existance of PRFs that are indistinguishable from truly random functions