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Introduction

• M. Bellare, P. Rogaway “Entity Authentication and Key

Distribution,” CRYPTO ’93

• Describes the first provably secure protocol for entity

authentication and key distribution

• Entity authentication is the process by which an agent in a

distributed system gains confidence in the identity of a

communcation partner

• Key distribution gives the partners a session key for message

confidentiality, integrity and other needs.



Previous Work

• Needham-Schroeder authentication protocol

• Propose, attack, fix, attack, fix, . . .

• Encryption-decryption paradigm

• Confidentiality vs. data integrity



Traditional Needham-Schroeder Symmetric-key

Authentication

• Traditional Needham-Schroeder relies on encryption

Alice → Trent : Alice, Bob, NA

Trent → Alice : {K, NA, Bob, {K, Alice}KBT
}KAT

Alice → Bob : Trent, {K, Alice}KBT

Bob → Alice : {NB}K

Alice → Bob : {NB − 1}K

• Without integrity checking the data can be modified although

encrypted



Refined Needham-Schroeder Symmetric-key

Authentication

• The refined Needham-Schroeder authentication minimizes use of

encryption using message authentication

Alice → Trent : Alice, Bob, NA

Trent → Alice : [{K}KAT
, NA, Alice, Bob]KAT

[{K}KBT
, T, Alice, Bob]KBT

Alice → Bob : [{K}KBT
, T, Alice, Bob]KBT

Bob → Alice : [NB ]K

Alice → Bob : [NB − 1]K

• Confidentiality service is provided at the minimum level



Bellare-Rogaway Model

• All communication between the parties is under the control of the

adversary who can read, create, modify, delay, replay messages

• The adversary can initiate new authentication sessions at any

time

• Each party will be modeled by an oracle which the adversary can

run

• The oracles never directly interact with one another

• The protocol is secure if the only way that an adversary can get

a party to accept is by faithfully relaying messages (benign

adversary)



Authenticating participants

• Players are modeled by a function Π(1k, i, j, a, κ, r):

1k Security parameter - k ∈ N

i Identity of the initiator - i ∈ I

j Identity of the responder - j ∈ I

a Secret information - a ∈ {0, 1}∗

κ Conversation so far - κ ∈ {0, 1}∗

r Random input of the sender - r ∈ {0, 1}∞

• I is a set of identities which defines the players who can

participate in the protocol

• The adversary is not a player (/∈ I)

• The function Π runs in polynomial time



Player Function Response

• The execution of Π(1k, i, j, a, κ, r) yields a response (m, δ, α):

m Next output message - m ∈ {0, 1}∗ ∪ {∗}

δ The decision of the oracle - δ ∈ {A, R, ∗}

α Private output to the player - α ∈ {0, 1}∗ ∪ {∗}



Key Generator

• The protocol also includes a key generator G(1k, i, rG) for

generating keys:

1k Security parameter - k ∈ N

i Identity of the protocol participant - i ∈ I ∪ {E}

rG infinite string - rG ∈ {0, 1}∞

• Generates keys for all the protocol participants

• In this protocol players share a common secret key

G(1k, i, rG) = G(1k, j, rG)



The Protocol

Running the protocol in the presence of an adversary E, using

security parameter k, means performing the following experiments:

• Choose a random string rG ∈ {0, 1}∞ and set ai = G(1k, i, rG),

for i ∈ I, and set aE = (1k, E, rG)

• Choose a random string rE ∈ {0, 1}∞ and for each i, j ∈ I, s ∈ N,

a random string rs
i,j ∈ {0, 1}∞

• Let κs
i,j = λ for all i, j ∈ I and s ∈ N

• Run adversary E on input (1k, aE , rE). E queries (i, j, s, x) and

oracle Πs
i,j computes (m, δ, α) = Π(1k, i, j, ai, κ

s
i,j .x, rs

i,j), answers

with (m, δ) and κs
i,j gets replaced by κs

i,j .x



Conversations

• The Adversary’s i-th query to an oracle is said to occur at time

τ = τi ∈ R. For i < j we demand that τi < τj

• The conversation κ of oracle Πs
i,j is a sequence of messages

ordered by time τ1 < τ2 < · · · < τR for some R ∈ N

• Oracle Πs
i,j has conversation

K = (τ1, α1, β1), (τ2, α2, β2), (τ3, α3, β3), . . . , (τm, αm, βm)

• If α1 = λ, Πs
i,j is an initiator oracle

• If α1 is any other string, Πs
i,j is a responeder oracle



Matching Conversations

• Consider two oracles Πs
i,j and Πt

j,i engage in a conversation

• If

κs
i,j = (τ0, λ, m1), (τ2, m

′
1, m2), (τ4, m

′
2, m3), . . . , (τ2t−2, m

′
t−1, mt)

and

κt
j,i = (τ1, m1, m

′
1), (τ3, m2, m

′
2), (τ5, m3, m

′
3), . . . , (τ2t−1, mt, λ)

parties i, j have a matching conversation



Mutual Authentication

• Two parties i, j accept when they have a matching conversation

• No-MatchingE(k) is the event that there exists i, j, s such that

Πs
i,j accepted yet there is no Πt

j,i with matching conversation

• Π is a secure mutual authentication protocol if for any

polynomial time adversary E

1. If oracles Πs
i,j and Πt

j,i have matching conversations, both

oracles accept

2. The probability of No-MatchingE(k) is negligible



MAP1

• Let fa be a pseudo random function {0, 1}≤L(k) → {0, 1}l(k)

specified by key a and L(k) = 4k and l(k) = k

• For any string x ∈ {0, 1}≤L(k) define [x]a = (x, fa(x)) to denote

the authentication of message x

Alicea Boba

A.RA

[B.A.RA.RB ]a

[A.RB ]a



MAP1 is Secure

• Suppose f is a pseudorandom function. MAP1 based on f is a

secure mutual authentication protocol

• Running the adversary E with MAP1 using a PRF fa is the real

experiment

• Running the adversary E with MAP1 using a truly random

function g is the random experiment

• The probability that the adversary E is successful in the random

MAP1 experiment is at most TE(k)2 · 2−k where TE(k) denotes

the polynomial bound on the number of oracle calls made by E



The Random MAP1 Experiment (part 1)

Claim: The probability that the initiator oracle Πs
A,B accepts

without a matching conversation is at most TE(k) · 2−k

Proof: Suppose at time τ0 oracle Πs
A,B send the flow RA. Let

R(τ0) = {R′
A ∈ {0, 1}k : ∃τ, t such that Πt

B,A was given R′
A at time

τ < τ0.}. If Πs
A,B accepts, then at time τ2 > τ0 is must have receive

[B.A.RA.RB]g for some RB. The probability that E can compute it

is at most 2−k. The output came from oracle Πt
B,A which received

RA. The probability of this happening before τ0 (RA ∈ R(τ0)) is at

most [TE(k) − 1] · 2−k. If it happened after τ0 then we have a

matching conversation. The probability that Πs
A,B accepts without a

matching conversation is at most TE(k) · 2−k.



The Random MAP1 Experiment (part 2)

Claim: The probability that the responder oracle Πt
B,A accepts

without a matching conversation is at most TE(k) · 2−k

Proof: Suppose at time τ1 oracle Πt
B,A received the flow RA and

responded with [B.A.RA, RB]g. To accept, Πt
B,A must receive

[A.RB]g at time τ3 > τ1. The probability that E can compute it is at

most 2−k. The initiator must be a Πs
A,C oracle. The interaction with

E has the form (τ0, λ, R′
A), (τ2, [C.A.R′

A.R′
B]g, [A.R′

B]g) for some

τ2 > τ0. Except for probability 2−k there is a Πu
C,A oracle which

output [C.A.R′
A.R′

B]g.



The Random MAP1 Experiment (part 2 cont.)

Proof (cont.): If (u, C) 6= (t, B), the probability that R′
B = RB is at

most [TE(k) − 2] · 2−k and thus the probability that [A.R′
B]g leads

Πt
B,A to accept is at most [TE(k) − 2] · 2−k. Suppose (u, C) = (t, B).

It follows that τ0 < τ1 < τ2 < τ3, R′
A = RA and R′

B = RB and we

have a matching conversation. The probability that Πt
B,A accepts

without a matching conversation is at most TE(k) · 2−k.

Conclusion: The probability that there exists an oracle which accepts

without a matching conversation is at most TE(k) times the bound

obtained in the claims, thus TE(k)2 · 2−k



The Real MAP1 Experiment

Claim: Real MAP1 is secure

Proof: Suppose adversary E has a non-negligible probability to

succeed in the real MAP1 experiment. We will construct a

polynomial time test T which distinguishes random functions from

pseudo-random functions. T receives g : {0, 1}≤L(k) → {0, 1}k which

is chosen by fliping a coin C. If C = 1 let g be a random function,

else pick a at random and let g = fa. T ’s job is to predict C with

some advantage. T runs E for MAP1g. T simulates all oracles Πs
i,j .

If E is successful, T predicts C = 0 (g is pseudorandom), else T

predicts C = 1 (g is random). T ’s advantage is Adv(T ) = 1
2Adv(E).

Thus an efficient attack on real MAP1 leads to a distiguihser of

random and pseudorandom functions.



Authenticated Key Exchange

• The intent of an AKE will be to authenticate entities and to

distribute a session key. When a player accepts, his private

output will be interpreted as the session key.

• We strengthen our adversary E so that he can query a session

key αs
i,j of oracle Πs

i,j

• Initially oracles are unopened, until the adversary asks for the

session key.

• An oracle Πs
i,j is fresh if it has accepted, is unopened and there is

no opened oracle Πt
j,i which engaged in a matching conversation

with Πs
i,j



Authenticated Key Exchange Security

• At the end of a secure AKE the adversary should be unable to

distinguish a fresh session key from a random element over

{0, 1}k

• Protocol Π is a secure AKE if Π is a secure mutual

authentication protocol and in addition it is true that:

1. In the precense of a benign adversary, oracles Πs
i,j and Πt

j,i

accept with αs
i,j = αt

j,i

2. In the precense of any polynomial time adversary E the

advantage of distinguishing a given session key from a random

output from {0, 1}k should be negligible.

• We can modify MAP1 to a secure AKE:



AKEP1

Alicea1,a2 Boba1,a2

A.RA

[B.A.RA.RB .{α}a2
]a1

[A.RB ]a1



Conclusion

• Bellare and Rogaway provide a framework for proving

authentication protocols

• Matching conversations is a useful paradigm for proving protocol

security

• MAP1 is a secure mutual authentication protocol and AKEP1 is

a secure key exchange protocol

• Proofs rely on the existance of PRFs that are indistinguishable

from truly random functions


